Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import logging
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
from zipfile import ZipFile
|
7 |
+
from typing import Any, Dict,List
|
8 |
+
from transformers import pipeline
|
9 |
+
|
10 |
+
class Image_classification:
|
11 |
+
def __init__(self):
|
12 |
+
self.model=""
|
13 |
+
|
14 |
+
|
15 |
+
def unzip_image_data(self) -> str:
|
16 |
+
"""
|
17 |
+
Unzips an image dataset into a specified directory.
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
str: The path to the directory containing the extracted image files.
|
21 |
+
"""
|
22 |
+
try:
|
23 |
+
with ZipFile("image_dataset.zip","r") as extract:
|
24 |
+
|
25 |
+
directory_path=str("dataset")
|
26 |
+
os.mkdir(directory_path)
|
27 |
+
extract.extractall(f"{directory_path}")
|
28 |
+
return f"{directory_path}"
|
29 |
+
|
30 |
+
except Exception as e:
|
31 |
+
logging.error(f"An error occurred during extraction: {e}")
|
32 |
+
return ""
|
33 |
+
|
34 |
+
def example_images(self) -> List[str]:
|
35 |
+
"""
|
36 |
+
Unzips the image dataset and generates a list of paths to the individual image files and use image for showing example
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
List[str]: A list of file paths to each image in the dataset.
|
40 |
+
"""
|
41 |
+
try:
|
42 |
+
image_dataset_folder = self.unzip_image_data()
|
43 |
+
image_extensions = ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp']
|
44 |
+
image_count = len([name for name in os.listdir(image_dataset_folder) if os.path.isfile(os.path.join(image_dataset_folder, name)) and os.path.splitext(name)[1].lower() in image_extensions])
|
45 |
+
example=[]
|
46 |
+
for i in range(image_count):
|
47 |
+
for name in os.listdir(image_dataset_folder):
|
48 |
+
path=(os.path.join(os.path.dirname(image_dataset_folder),os.path.join(image_dataset_folder,name)))
|
49 |
+
example.append(path)
|
50 |
+
return example
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
logging.error(f"An error occurred in example images: {e}")
|
54 |
+
return ""
|
55 |
+
|
56 |
+
def classify(self, image: Image.Image, model: Any) -> Dict[str, float]:
|
57 |
+
"""
|
58 |
+
Classifies an image using a specified model.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
image (Image.Image): The image to classify.
|
62 |
+
model (Any): The model used for classification.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
Dict[str, float]: A dictionary of classification labels and their corresponding scores.
|
66 |
+
"""
|
67 |
+
try:
|
68 |
+
self.model=model
|
69 |
+
classifier = pipeline("image-classification", model=self.model)
|
70 |
+
result= classifier(image)
|
71 |
+
return result
|
72 |
+
except Exception as e:
|
73 |
+
logging.error(f"An error occurred during image classification: {e}")
|
74 |
+
raise
|
75 |
+
|
76 |
+
def format_the_result(self, image: Image.Image, model: Any) -> Dict[str, float]:
|
77 |
+
"""
|
78 |
+
Formats the classification result by retaining the highest score for each label.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
image (Image.Image): The image to classify.
|
82 |
+
model (Any): The model used for classification.
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
Dict[str, float]: A dictionary with unique labels and the highest score for each label.
|
86 |
+
"""
|
87 |
+
try:
|
88 |
+
data=self.classify(image,model)
|
89 |
+
new_dict = {}
|
90 |
+
for item in data:
|
91 |
+
label = item['label']
|
92 |
+
score = item['score']
|
93 |
+
|
94 |
+
if label in new_dict:
|
95 |
+
if new_dict[label] < score:
|
96 |
+
new_dict[label] = score
|
97 |
+
else:
|
98 |
+
new_dict[label] = score
|
99 |
+
return new_dict
|
100 |
+
except Exception as e:
|
101 |
+
logging.error(f"An error occurred while formatting the results: {e}")
|
102 |
+
raise
|
103 |
+
|
104 |
+
def interface(self):
|
105 |
+
|
106 |
+
with gr.Blocks(css=""".gradio-container {background: #314755;
|
107 |
+
background: -webkit-linear-gradient(to right, #26a0da, #314755);
|
108 |
+
background: linear-gradient(to right, #26a0da, #314755);}
|
109 |
+
.block svelte-90oupt padded{background:314755;}""") as demo:
|
110 |
+
|
111 |
+
gr.HTML("""
|
112 |
+
<center><h1 style="color:#fff">Image Classification</h1></center>""")
|
113 |
+
|
114 |
+
exam_img=self.example_images()
|
115 |
+
with gr.Row():
|
116 |
+
model = gr.Dropdown(["facebook/regnet-x-040","google/vit-large-patch16-384","microsoft/resnet-50",""],label="Choose a model")
|
117 |
+
with gr.Row():
|
118 |
+
image = gr.Image(type="filepath",sources="upload")
|
119 |
+
with gr.Column():
|
120 |
+
output=gr.Label()
|
121 |
+
with gr.Row():
|
122 |
+
button=gr.Button()
|
123 |
+
button.click(self.format_the_result,[image,model],output)
|
124 |
+
gr.Examples(
|
125 |
+
examples=exam_img,
|
126 |
+
inputs=[image],
|
127 |
+
outputs=output,
|
128 |
+
fn=self.format_the_result,
|
129 |
+
cache_examples=False,
|
130 |
+
)
|
131 |
+
demo.launch(debug=True)
|
132 |
+
|
133 |
+
if __name__=="__main__":
|
134 |
+
|
135 |
+
image_classification=Image_classification()
|
136 |
+
result=image_classification.interface()
|