File size: 9,486 Bytes
ce4cf4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import glob
import io
import json
import os
import time
from dataclasses import dataclass

import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from loguru import logger

from competitions.enums import SubmissionStatus
from competitions.info import CompetitionInfo
from competitions.utils import run_evaluation


_DOCKERFILE = """
FROM huggingface/competitions:latest

CMD uvicorn competitions.api:api --port 7860 --host 0.0.0.0
"""

# format _DOCKERFILE
_DOCKERFILE = _DOCKERFILE.replace("\n", " ").replace("  ", "\n").strip()


@dataclass
class JobRunner:
    competition_id: str
    token: str
    output_path: str

    def __post_init__(self):
        self.competition_info = CompetitionInfo(competition_id=self.competition_id, autotrain_token=self.token)
        self.competition_id = self.competition_info.competition_id
        self.competition_type = self.competition_info.competition_type
        self.metric = self.competition_info.metric
        self.submission_id_col = self.competition_info.submission_id_col
        self.submission_cols = self.competition_info.submission_cols
        self.submission_rows = self.competition_info.submission_rows
        self.time_limit = self.competition_info.time_limit
        self.dataset = self.competition_info.dataset
        self.submission_filenames = self.competition_info.submission_filenames

    def get_pending_subs(self):
        submission_jsons = snapshot_download(
            repo_id=self.competition_id,
            allow_patterns="submission_info/*.json",
            token=self.token,
            repo_type="dataset",
        )
        submission_jsons = glob.glob(os.path.join(submission_jsons, "submission_info/*.json"))
        pending_submissions = []
        for _json in submission_jsons:
            _json = json.load(open(_json, "r", encoding="utf-8"))
            team_id = _json["id"]
            for sub in _json["submissions"]:
                if sub["status"] == SubmissionStatus.PENDING.value:
                    pending_submissions.append(
                        {
                            "team_id": team_id,
                            "submission_id": sub["submission_id"],
                            "datetime": sub["datetime"],
                            "submission_repo": sub["submission_repo"],
                            "space_id": sub["space_id"],
                        }
                    )
        if len(pending_submissions) == 0:
            return None
        logger.info(f"Found {len(pending_submissions)} pending submissions.")
        pending_submissions = pd.DataFrame(pending_submissions)
        pending_submissions["datetime"] = pd.to_datetime(pending_submissions["datetime"])
        pending_submissions = pending_submissions.sort_values("datetime")
        pending_submissions = pending_submissions.reset_index(drop=True)
        return pending_submissions

    def _queue_submission(self, team_id, submission_id):
        team_fname = hf_hub_download(
            repo_id=self.competition_id,
            filename=f"submission_info/{team_id}.json",
            token=self.token,
            repo_type="dataset",
        )
        with open(team_fname, "r", encoding="utf-8") as f:
            team_submission_info = json.load(f)

        for submission in team_submission_info["submissions"]:
            if submission["submission_id"] == submission_id:
                submission["status"] = SubmissionStatus.QUEUED.value
                break

        team_submission_info_json = json.dumps(team_submission_info, indent=4)
        team_submission_info_json_bytes = team_submission_info_json.encode("utf-8")
        team_submission_info_json_buffer = io.BytesIO(team_submission_info_json_bytes)
        api = HfApi(token=self.token)
        api.upload_file(
            path_or_fileobj=team_submission_info_json_buffer,
            path_in_repo=f"submission_info/{team_id}.json",
            repo_id=self.competition_id,
            repo_type="dataset",
        )

    def mark_submission_failed(self, team_id, submission_id):
        team_fname = hf_hub_download(
            repo_id=self.competition_id,
            filename=f"submission_info/{team_id}.json",
            token=self.token,
            repo_type="dataset",
        )
        with open(team_fname, "r", encoding="utf-8") as f:
            team_submission_info = json.load(f)

        for submission in team_submission_info["submissions"]:
            if submission["submission_id"] == submission_id:
                submission["status"] = SubmissionStatus.FAILED.value

        team_submission_info_json = json.dumps(team_submission_info, indent=4)
        team_submission_info_json_bytes = team_submission_info_json.encode("utf-8")
        team_submission_info_json_buffer = io.BytesIO(team_submission_info_json_bytes)

        api = HfApi(token=self.token)
        api.upload_file(
            path_or_fileobj=team_submission_info_json_buffer,
            path_in_repo=f"submission_info/{team_id}.json",
            repo_id=self.competition_id,
            repo_type="dataset",
        )

    def run_local(self, team_id, submission_id, submission_repo):
        self._queue_submission(team_id, submission_id)
        eval_params = {
            "competition_id": self.competition_id,
            "competition_type": self.competition_type,
            "metric": self.metric,
            "token": self.token,
            "team_id": team_id,
            "submission_id": submission_id,
            "submission_id_col": self.submission_id_col,
            "submission_cols": self.submission_cols,
            "submission_rows": self.submission_rows,
            "output_path": self.output_path,
            "submission_repo": submission_repo,
            "time_limit": self.time_limit,
            "dataset": self.dataset,
            "submission_filenames": self.submission_filenames,
        }
        eval_params = json.dumps(eval_params)
        eval_pid = run_evaluation(eval_params, local=True, wait=True)
        logger.info(f"New evaluation process started with pid {eval_pid}.")

    def _create_readme(self, project_name):
        _readme = "---\n"
        _readme += f"title: {project_name}\n"
        _readme += "emoji: 🚀\n"
        _readme += "colorFrom: green\n"
        _readme += "colorTo: indigo\n"
        _readme += "sdk: docker\n"
        _readme += "pinned: false\n"
        _readme += "duplicated_from: autotrain-projects/autotrain-advanced\n"
        _readme += "---\n"
        _readme = io.BytesIO(_readme.encode())
        return _readme

    def create_space(self, team_id, submission_id, submission_repo, space_id):
        api = HfApi(token=self.token)
        params = {
            "competition_id": self.competition_id,
            "competition_type": self.competition_type,
            "metric": self.metric,
            "token": self.token,
            "team_id": team_id,
            "submission_id": submission_id,
            "submission_id_col": self.submission_id_col,
            "submission_cols": self.submission_cols,
            "submission_rows": self.submission_rows,
            "output_path": self.output_path,
            "submission_repo": submission_repo,
            "time_limit": self.time_limit,
            "dataset": self.dataset,
            "submission_filenames": self.submission_filenames,
        }

        api.add_space_secret(repo_id=space_id, key="PARAMS", value=json.dumps(params))

        readme = self._create_readme(space_id.split("/")[-1])
        api.upload_file(
            path_or_fileobj=readme,
            path_in_repo="README.md",
            repo_id=space_id,
            repo_type="space",
        )

        _dockerfile = io.BytesIO(_DOCKERFILE.encode())
        api.upload_file(
            path_or_fileobj=_dockerfile,
            path_in_repo="Dockerfile",
            repo_id=space_id,
            repo_type="space",
        )
        self._queue_submission(team_id, submission_id)

    def run(self):
        while True:
            pending_submissions = self.get_pending_subs()
            if pending_submissions is None:
                time.sleep(5)
                continue
            if self.competition_type == "generic":
                for _, row in pending_submissions.iterrows():
                    team_id = row["team_id"]
                    submission_id = row["submission_id"]
                    submission_repo = row["submission_repo"]
                    self.run_local(team_id, submission_id, submission_repo)
            elif self.competition_type == "script":
                for _, row in pending_submissions.iterrows():
                    team_id = row["team_id"]
                    submission_id = row["submission_id"]
                    submission_repo = row["submission_repo"]
                    space_id = row["space_id"]
                    try:
                        self.create_space(team_id, submission_id, submission_repo, space_id)
                    except Exception as e:
                        logger.error(
                            f"Failed to create space for {team_id} {submission_id} {submission_repo} {space_id}: {e}"
                        )
                        # mark submission as failed
                        self.mark_submission_failed(team_id, submission_id)
                        logger.error(f"Marked submission {submission_id} as failed.")
                        continue
            time.sleep(5)