Spaces:
Sleeping
Sleeping
File size: 4,685 Bytes
522c053 bf756e1 af1a473 a83e487 a6ad9ca a83e487 a6ad9ca a83e487 af1a473 112a3e2 15bf7ba af1a473 a83e487 af1a473 a83e487 a6ad9ca a83e487 a6ad9ca a83e487 a6ad9ca a83e487 af1a473 a6ad9ca a83e487 a6ad9ca a83e487 a6ad9ca af1a473 a6ad9ca af1a473 a83e487 a6ad9ca a83e487 af1a473 371ca9c a6ad9ca 371ca9c a6ad9ca 371ca9c a6ad9ca 371ca9c a6ad9ca 371ca9c a6ad9ca 371ca9c a6ad9ca 522c053 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import os
import gradio as gr
import openai
import speech_recognition as sr
import logging
import traceback
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Set OpenAI API key
openai.api_key = os.environ.get("OPENAI_API_KEY")
def generate_text():
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "Generate exactly two simple sentences for English pronunciation practice. Do not include any instructions, comments, or additional text."},
{"role": "user", "content": "Create two simple sentences for pronunciation practice."}
]
)
return response.choices[0].message['content'].strip()
except Exception as e:
logger.error(f"Error in generate_text: {str(e)}")
return "Error generating text. Please try again."
def get_pronunciation_feedback(original_text, transcription):
try:
logger.debug(f"Original text: {original_text}")
logger.debug(f"Transcription: {transcription}")
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful pronunciation assistant. Compare the generated text with the user's transcription and provide feedback on how the user can improve their pronunciation. Single out specific words they pronounced incorrectly and give tips on how to improve, like for example 'schedule' can be pronounced as 'sked-jool'."},
{"role": "user", "content": f"Original text: '{original_text}'\nTranscription: '{transcription}'\nProvide pronunciation feedback."}
]
)
feedback = response.choices[0].message['content']
logger.debug(f"Generated feedback: {feedback}")
return feedback
except Exception as e:
logger.error(f"Error in get_pronunciation_feedback: {str(e)}")
logger.error(traceback.format_exc())
return "Error generating feedback. Please try again."
def transcribe_audio_realtime(audio):
try:
logger.debug(f"Received audio file: {audio}")
recognizer = sr.Recognizer()
with sr.AudioFile(audio) as source:
logger.debug("Reading audio file")
audio_data = recognizer.record(source)
logger.debug("Transcribing audio")
transcription = recognizer.recognize_google(audio_data)
logger.debug(f"Transcription result: {transcription}")
return transcription
except sr.UnknownValueError:
logger.warning("Could not understand audio")
return "Could not understand audio"
except sr.RequestError as e:
logger.error(f"Could not request results from the speech recognition service; {str(e)}")
return "Error in speech recognition service"
except Exception as e:
logger.error(f"Error in transcribe_audio_realtime: {str(e)}")
logger.error(traceback.format_exc())
return "Error transcribing audio. Please try again."
def practice_pronunciation(audio, text_to_read):
logger.info("Starting practice_pronunciation function")
if not text_to_read:
logger.info("Generating new text to read")
text_to_read = generate_text()
logger.info(f"Text to read: {text_to_read}")
logger.info("Starting transcription")
transcription = transcribe_audio_realtime(audio)
logger.info(f"Transcription result: {transcription}")
logger.info("Getting pronunciation feedback")
feedback = get_pronunciation_feedback(text_to_read, transcription)
logger.info(f"Feedback generated: {feedback}")
return text_to_read, transcription, feedback
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Pronunciation Practice Tool")
gr.Markdown("Generate a text to read, then record yourself reading it. The system will provide pronunciation feedback.")
with gr.Row():
text_to_read = gr.Textbox(label="Text to Read")
generate_button = gr.Button("Generate New Text")
audio_input = gr.Audio(type="filepath", label="Record your voice")
with gr.Row():
transcription_output = gr.Textbox(label="Your Transcription")
feedback_output = gr.Textbox(label="Pronunciation Feedback")
submit_button = gr.Button("Submit")
generate_button.click(generate_text, outputs=text_to_read)
submit_button.click(practice_pronunciation, inputs=[audio_input, text_to_read], outputs=[text_to_read, transcription_output, feedback_output])
# Launch the app
if __name__ == "__main__":
demo.launch() |