Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,105 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
|
|
|
|
|
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
def respond(
|
| 11 |
message,
|
| 12 |
-
history
|
| 13 |
system_message,
|
| 14 |
max_tokens,
|
| 15 |
temperature,
|
| 16 |
-
top_p,
|
| 17 |
):
|
|
|
|
| 18 |
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
for
|
| 21 |
-
if
|
| 22 |
-
messages.append({"role": "user", "content":
|
| 23 |
-
if
|
| 24 |
-
messages.append({"role": "assistant", "content":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
|
|
|
| 32 |
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
)
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=
|
| 52 |
-
gr.Slider(
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
),
|
| 59 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
from llama_cpp import Llama
|
| 4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 5 |
+
from langchain_community.vectorstores import Chroma
|
| 6 |
+
from langchain.prompts import PromptTemplate
|
| 7 |
|
| 8 |
+
# Initialize the embedding model
|
| 9 |
+
embeddings = HuggingFaceEmbeddings(
|
| 10 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 11 |
+
model_kwargs={'device': 'cpu'},
|
| 12 |
+
encode_kwargs={'normalize_embeddings': True}
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
# Load the existing Chroma vector store
|
| 16 |
+
persist_directory = os.path.join(os.path.dirname(__file__), 'mydb')
|
| 17 |
+
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
| 18 |
+
|
| 19 |
+
# Initialize the Llama model
|
| 20 |
+
llm = Llama.from_pretrained(
|
| 21 |
+
repo_id="bartowski/Llama-3.2-1B-Instruct-GGUF",
|
| 22 |
+
filename="Llama-3.2-1B-Instruct-Q8_0.gguf",
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Create the RAG prompt template
|
| 26 |
+
template = """Answer the question based only on the following context:
|
| 27 |
+
|
| 28 |
+
{context}
|
| 29 |
+
|
| 30 |
+
Question: {question}
|
| 31 |
+
|
| 32 |
+
Answer the question in a clear and concise way. If you cannot find the answer in the context, just say "I don't have enough information to answer this question."
|
| 33 |
+
|
| 34 |
+
Make sure to:
|
| 35 |
+
1. Only use information from the provided context
|
| 36 |
+
2. Be concise and direct
|
| 37 |
+
3. If you're unsure, acknowledge it
|
| 38 |
"""
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
prompt = PromptTemplate.from_template(template)
|
| 41 |
|
| 42 |
def respond(
|
| 43 |
message,
|
| 44 |
+
history,
|
| 45 |
system_message,
|
| 46 |
max_tokens,
|
| 47 |
temperature,
|
| 48 |
+
# top_p,
|
| 49 |
):
|
| 50 |
+
# Build the messages list
|
| 51 |
messages = [{"role": "system", "content": system_message}]
|
| 52 |
|
| 53 |
+
for user_msg, assistant_msg in history:
|
| 54 |
+
if user_msg:
|
| 55 |
+
messages.append({"role": "user", "content": user_msg})
|
| 56 |
+
if assistant_msg:
|
| 57 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
| 58 |
+
|
| 59 |
+
# Search the vector store
|
| 60 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
|
| 61 |
+
docs = retriever.get_relevant_documents(message)
|
| 62 |
+
context = "\n\n".join([doc.page_content for doc in docs])
|
| 63 |
|
| 64 |
+
# Format the prompt
|
| 65 |
+
final_prompt = prompt.format(context=context, question=message)
|
| 66 |
|
| 67 |
+
# Add the formatted prompt to messages
|
| 68 |
+
messages.append({"role": "user", "content": final_prompt})
|
| 69 |
|
| 70 |
+
# Generate response using the Llama model
|
| 71 |
+
response = llm.create_chat_completion(
|
| 72 |
+
messages=messages,
|
| 73 |
max_tokens=max_tokens,
|
|
|
|
| 74 |
temperature=temperature,
|
| 75 |
+
# top_p=top_p,
|
| 76 |
+
)
|
|
|
|
| 77 |
|
| 78 |
+
# Extract the assistant's reply
|
| 79 |
+
assistant_reply = response['choices'][0]['message']['content']
|
| 80 |
|
| 81 |
+
return assistant_reply
|
| 82 |
|
| 83 |
+
# Create Gradio Chat Interface
|
|
|
|
|
|
|
| 84 |
demo = gr.ChatInterface(
|
| 85 |
+
fn=respond,
|
| 86 |
additional_inputs=[
|
| 87 |
+
gr.Textbox(value="You are a friendly chatbot.", label="System Message"),
|
| 88 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
|
| 89 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
| 90 |
+
# gr.Slider(
|
| 91 |
+
# minimum=0.1,
|
| 92 |
+
# maximum=1.0,
|
| 93 |
+
# value=0.95,
|
| 94 |
+
# step=0.05,
|
| 95 |
+
# label="Top-p (Nucleus Sampling)",
|
| 96 |
+
# ),
|
| 97 |
],
|
| 98 |
+
title="Document-Based QA with Llama",
|
| 99 |
+
description="A PDF Chat interface powered by the Llama model.",
|
| 100 |
+
examples=["What is a Computer?"],
|
| 101 |
+
theme="default",
|
| 102 |
)
|
| 103 |
|
|
|
|
| 104 |
if __name__ == "__main__":
|
| 105 |
+
demo.launch()
|