Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 4 |
+
import spaces
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# Model configuration
|
| 8 |
+
# Replace with your desired model from Hugging Face Hub
|
| 9 |
+
MODEL_ID = "meta-llama/Llama-3.2-3B-Instruct" # Example with Llama 3.2 3B
|
| 10 |
+
# For larger models, you might use: "meta-llama/Llama-3.1-8B-Instruct"
|
| 11 |
+
# Note: Some models require access approval on Hugging Face
|
| 12 |
+
|
| 13 |
+
# Set device
|
| 14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
|
| 16 |
+
# Initialize model and tokenizer
|
| 17 |
+
print(f"Loading model: {MODEL_ID}")
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 19 |
+
MODEL_ID,
|
| 20 |
+
trust_remote_code=True
|
| 21 |
+
)
|
| 22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
+
MODEL_ID,
|
| 24 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 25 |
+
device_map="auto",
|
| 26 |
+
trust_remote_code=True,
|
| 27 |
+
low_cpu_mem_usage=True
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# For MoE (Mixture of Experts) models like Mixtral, you would use:
|
| 31 |
+
# MODEL_ID = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 32 |
+
# This is an example of a model with multiple experts
|
| 33 |
+
|
| 34 |
+
@spaces.GPU(duration=60) # Request GPU for 60 seconds per inference
|
| 35 |
+
def generate_response(
|
| 36 |
+
message,
|
| 37 |
+
history,
|
| 38 |
+
max_tokens=512,
|
| 39 |
+
temperature=0.7,
|
| 40 |
+
top_p=0.95,
|
| 41 |
+
repetition_penalty=1.1,
|
| 42 |
+
):
|
| 43 |
+
"""Generate response using the loaded model"""
|
| 44 |
+
|
| 45 |
+
# Format the conversation history
|
| 46 |
+
messages = []
|
| 47 |
+
for user_msg, assistant_msg in history:
|
| 48 |
+
messages.append({"role": "user", "content": user_msg})
|
| 49 |
+
if assistant_msg:
|
| 50 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
| 51 |
+
messages.append({"role": "user", "content": message})
|
| 52 |
+
|
| 53 |
+
# Apply chat template if available
|
| 54 |
+
if hasattr(tokenizer, 'apply_chat_template'):
|
| 55 |
+
prompt = tokenizer.apply_chat_template(
|
| 56 |
+
messages,
|
| 57 |
+
tokenize=False,
|
| 58 |
+
add_generation_prompt=True
|
| 59 |
+
)
|
| 60 |
+
else:
|
| 61 |
+
# Fallback formatting
|
| 62 |
+
prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
|
| 63 |
+
prompt += "\nassistant: "
|
| 64 |
+
|
| 65 |
+
# Tokenize input
|
| 66 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
| 67 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 68 |
+
|
| 69 |
+
# Generate response
|
| 70 |
+
with torch.no_grad():
|
| 71 |
+
outputs = model.generate(
|
| 72 |
+
**inputs,
|
| 73 |
+
max_new_tokens=max_tokens,
|
| 74 |
+
temperature=temperature,
|
| 75 |
+
top_p=top_p,
|
| 76 |
+
do_sample=True,
|
| 77 |
+
repetition_penalty=repetition_penalty,
|
| 78 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 79 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# Decode response
|
| 83 |
+
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
| 84 |
+
|
| 85 |
+
return response
|
| 86 |
+
|
| 87 |
+
# Alternative: Using pipeline (simpler but less control)
|
| 88 |
+
def generate_with_pipeline(message, history, max_tokens=512, temperature=0.7):
|
| 89 |
+
"""Alternative generation using transformers pipeline"""
|
| 90 |
+
pipe = pipeline(
|
| 91 |
+
"text-generation",
|
| 92 |
+
model=model,
|
| 93 |
+
tokenizer=tokenizer,
|
| 94 |
+
device=device
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
messages = []
|
| 98 |
+
for user_msg, assistant_msg in history:
|
| 99 |
+
messages.append({"role": "user", "content": user_msg})
|
| 100 |
+
if assistant_msg:
|
| 101 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
| 102 |
+
messages.append({"role": "user", "content": message})
|
| 103 |
+
|
| 104 |
+
response = pipe(
|
| 105 |
+
messages,
|
| 106 |
+
max_new_tokens=max_tokens,
|
| 107 |
+
temperature=temperature,
|
| 108 |
+
do_sample=True,
|
| 109 |
+
return_full_text=False
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
return response[0]['generated_text']
|
| 113 |
+
|
| 114 |
+
# Create Gradio interface
|
| 115 |
+
with gr.Blocks(title="Open Source LLM Chat") as demo:
|
| 116 |
+
gr.Markdown(f"""
|
| 117 |
+
# 🤖 Open Source LLM Chat Interface
|
| 118 |
+
|
| 119 |
+
**Model**: {MODEL_ID}
|
| 120 |
+
|
| 121 |
+
This interface allows you to chat with open-source language models from Hugging Face.
|
| 122 |
+
""")
|
| 123 |
+
|
| 124 |
+
chatbot = gr.Chatbot(
|
| 125 |
+
height=500,
|
| 126 |
+
show_label=False,
|
| 127 |
+
elem_id="chatbot"
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
with gr.Row():
|
| 131 |
+
msg = gr.Textbox(
|
| 132 |
+
label="Message",
|
| 133 |
+
placeholder="Type your message here...",
|
| 134 |
+
lines=2,
|
| 135 |
+
scale=4
|
| 136 |
+
)
|
| 137 |
+
submit_btn = gr.Button("Send", variant="primary", scale=1)
|
| 138 |
+
|
| 139 |
+
with gr.Accordion("⚙️ Generation Settings", open=False):
|
| 140 |
+
max_tokens = gr.Slider(
|
| 141 |
+
minimum=50,
|
| 142 |
+
maximum=2048,
|
| 143 |
+
value=512,
|
| 144 |
+
step=50,
|
| 145 |
+
label="Max Tokens"
|
| 146 |
+
)
|
| 147 |
+
temperature = gr.Slider(
|
| 148 |
+
minimum=0.1,
|
| 149 |
+
maximum=2.0,
|
| 150 |
+
value=0.7,
|
| 151 |
+
step=0.1,
|
| 152 |
+
label="Temperature (higher = more creative)"
|
| 153 |
+
)
|
| 154 |
+
top_p = gr.Slider(
|
| 155 |
+
minimum=0.1,
|
| 156 |
+
maximum=1.0,
|
| 157 |
+
value=0.95,
|
| 158 |
+
step=0.05,
|
| 159 |
+
label="Top P (nucleus sampling)"
|
| 160 |
+
)
|
| 161 |
+
repetition_penalty = gr.Slider(
|
| 162 |
+
minimum=1.0,
|
| 163 |
+
maximum=2.0,
|
| 164 |
+
value=1.1,
|
| 165 |
+
step=0.1,
|
| 166 |
+
label="Repetition Penalty"
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
with gr.Row():
|
| 170 |
+
clear_btn = gr.Button("🗑️ Clear Chat")
|
| 171 |
+
retry_btn = gr.Button("🔄 Retry Last")
|
| 172 |
+
undo_btn = gr.Button("↩️ Undo")
|
| 173 |
+
|
| 174 |
+
# Example prompts
|
| 175 |
+
gr.Examples(
|
| 176 |
+
examples=[
|
| 177 |
+
"Explain quantum computing in simple terms",
|
| 178 |
+
"Write a Python function to find prime numbers",
|
| 179 |
+
"What are the key differences between supervised and unsupervised learning?",
|
| 180 |
+
"Create a healthy meal plan for a week",
|
| 181 |
+
"Explain the concept of blockchain technology"
|
| 182 |
+
],
|
| 183 |
+
inputs=msg,
|
| 184 |
+
label="Example Prompts"
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
# Event handlers
|
| 188 |
+
def user_submit(message, history):
|
| 189 |
+
return "", history + [[message, None]]
|
| 190 |
+
|
| 191 |
+
def bot_response(history, max_tokens, temperature, top_p, repetition_penalty):
|
| 192 |
+
if not history:
|
| 193 |
+
return history
|
| 194 |
+
|
| 195 |
+
message = history[-1][0]
|
| 196 |
+
bot_message = generate_response(
|
| 197 |
+
message,
|
| 198 |
+
history[:-1],
|
| 199 |
+
max_tokens,
|
| 200 |
+
temperature,
|
| 201 |
+
top_p,
|
| 202 |
+
repetition_penalty
|
| 203 |
+
)
|
| 204 |
+
history[-1][1] = bot_message
|
| 205 |
+
return history
|
| 206 |
+
|
| 207 |
+
def clear_chat():
|
| 208 |
+
return None
|
| 209 |
+
|
| 210 |
+
def retry_last(history):
|
| 211 |
+
if history and history[-1][1]:
|
| 212 |
+
history[-1][1] = None
|
| 213 |
+
return history
|
| 214 |
+
return history
|
| 215 |
+
|
| 216 |
+
def undo_last(history):
|
| 217 |
+
if history:
|
| 218 |
+
return history[:-1]
|
| 219 |
+
return history
|
| 220 |
+
|
| 221 |
+
# Connect events
|
| 222 |
+
msg.submit(
|
| 223 |
+
user_submit,
|
| 224 |
+
[msg, chatbot],
|
| 225 |
+
[msg, chatbot]
|
| 226 |
+
).then(
|
| 227 |
+
bot_response,
|
| 228 |
+
[chatbot, max_tokens, temperature, top_p, repetition_penalty],
|
| 229 |
+
chatbot
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
submit_btn.click(
|
| 233 |
+
user_submit,
|
| 234 |
+
[msg, chatbot],
|
| 235 |
+
[msg, chatbot]
|
| 236 |
+
).then(
|
| 237 |
+
bot_response,
|
| 238 |
+
[chatbot, max_tokens, temperature, top_p, repetition_penalty],
|
| 239 |
+
chatbot
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
clear_btn.click(clear_chat, outputs=chatbot)
|
| 243 |
+
retry_btn.click(retry_last, chatbot, chatbot).then(
|
| 244 |
+
bot_response,
|
| 245 |
+
[chatbot, max_tokens, temperature, top_p, repetition_penalty],
|
| 246 |
+
chatbot
|
| 247 |
+
)
|
| 248 |
+
undo_btn.click(undo_last, chatbot, chatbot)
|
| 249 |
+
|
| 250 |
+
# Footer
|
| 251 |
+
gr.Markdown("""
|
| 252 |
+
---
|
| 253 |
+
💡 **Tips**:
|
| 254 |
+
- Adjust temperature for more/less creative responses
|
| 255 |
+
- Use repetition penalty to reduce repetitive text
|
| 256 |
+
- Some models require Hugging Face access tokens
|
| 257 |
+
""")
|
| 258 |
+
|
| 259 |
+
# Launch the app
|
| 260 |
+
if __name__ == "__main__":
|
| 261 |
+
demo.launch()
|