|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Symbolic Judge: Verifiable Rewards for Logical Reasoning at Scale """ |
|
|
|
import os |
|
import subprocess |
|
import tempfile |
|
import evaluate |
|
import logging |
|
import datasets |
|
from tqdm import tqdm |
|
import time |
|
import multiprocessing as mp |
|
import re |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
_CITATION = """\ |
|
@misc{helff2025slrautomatedsynthesisframework, |
|
title={SLR: An Automated Synthesis Framework for Scalable Logical Reasoning}, |
|
author={Lukas Helff and Ahmad Omar and Felix Friedrich and Wolfgang Stammer and Antonia Wüst and Tim Woydt and Rupert Mitchell and Patrick Schramowski and Kristian Kersting}, |
|
year={2025}, |
|
eprint={2506.15787}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.AI}, |
|
url={https://arxiv.org/abs/2506.15787}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Verifiable Rewards for Scalable Logical Reasoning (SLR) introduces a symbolic judge that provides verifiable rewards for logical reasoning tasks. |
|
To check whether a given task is solved, the symbolic judge evaluates a candidate solution (i.e., a logic rule, typically generated by a language model) using an executable validation program that encodes the task's background knowledge and labeled examples. |
|
Evaluations performed by the symbolic judge are fully verifiable and grounded in formal logic, ensuring an automatic, transparent, and reproducible standard for evaluation and reward in both supervised and reinforcement learning settings. |
|
|
|
How it Works: |
|
- Input: The symbolic judge takes as input a candidate hypothesis (logic rule) and an executable validation program containing background knowledge and examples. |
|
- Execution: The candidate rule is executed against the validation program using a Prolog interpreter. |
|
- Correctness Criteria: The rule is considered correct if it entails all positive examples and rejects all negative examples. |
|
- Metrics: The symbolic judge computes a range of evaluation metrics (detailed below). |
|
- Usage: see **Documentation tab** for details on how to use the symbolic judge in your own projects. |
|
|
|
Example usage: |
|
from evaluate import load |
|
|
|
symbolic_judge = load("AIML-TUDA/VerifiableRewardsForScalableLogicalReasoning") |
|
|
|
validation_program = \"\"\" |
|
eastbound(train0). |
|
has_car(train0, car0_1). |
|
car_num(car0_1, 1). |
|
car_color(car0_1, white). |
|
car_len(car0_1, short). |
|
has_wall(car0_1, full). |
|
|
|
westbound(train1). |
|
has_car(train1, car1_1). |
|
car_num(car1_1, 1). |
|
car_color(car1_1, yellow). |
|
car_len(car1_1, short). |
|
has_wall(car1_1, full). |
|
\"\"\" |
|
|
|
predicted_rule = "eastbound(Train):- has_car(Train, Car1), car_color(Car1, white)." |
|
|
|
results = symbolic_judge.compute( |
|
predictions=[predicted_rule], |
|
references=[{"validation_program": validation_program, |
|
"evaluation_config": { |
|
"positive_predicate": "eastbound", |
|
"negative_predicate": "westbound" |
|
}}] |
|
) |
|
|
|
Note: A local Prolog interpreter is required to execute validation programs. |
|
""" |
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Args: |
|
predictions (`list` of `str`): Each prediction should be a Prolog rule like "pred(T) :- Body." |
|
references (`list` of `dict`): Each reference should contain: |
|
- 'validation_program' (`str`): Background knowledge in Prolog syntax |
|
- 'evaluation_config' (`dict`, optional): Configuration of predicates to use for evaluation. |
|
Define: positive_predicate, and negative_predicate, the positive one should match the head of the rule to evaluate. |
|
Returns: |
|
accuracy (`float`): The proportion of predictions that correctly solve all examples. Value is between 0 and 1. |
|
partial_score (`float`): Average proportion of correctly classified examples across all predictions. Value is between 0 and 1. |
|
syntax_score (`float`): Proportion of rules with valid syntax. Value is between 0 and 1. |
|
detailed_results (`list` of `dict`): Per-example results including correctness, partial score, execution time, and any errors encountered. |
|
""" |
|
|
|
|
|
def _evaluate_with_prolog(prediction, validation_program, eval_config, timeout=5): |
|
""" |
|
Evaluates a predicted rule against the validation program using Prolog. |
|
""" |
|
|
|
positive_pred = eval_config.get("positive_predicate", "eastbound") |
|
negative_pred = eval_config.get("negative_predicate", "westbound") |
|
|
|
rule_to_evaluate = extract_ilp_from_text_v2(prediction) |
|
if positive_pred not in rule_to_evaluate: |
|
logger.warning(f"Rule '{rule_to_evaluate}' does not contain positive predicate '{positive_pred}'") |
|
return { |
|
"is_correct": False, |
|
"partial_score": 0.0, |
|
"syntax_valid": False, |
|
"error": f"Invalid Syntax: Logic Rule not found for symbol '{positive_pred}'" |
|
} |
|
|
|
pos_examples = re.findall(rf'{positive_pred}\(([^)]+)\)', validation_program) |
|
neg_examples = re.findall(rf'{negative_pred}\(([^)]+)\)', validation_program) |
|
|
|
|
|
arity = 1 |
|
if pos_examples: |
|
arity = pos_examples[0].count(',') + 1 |
|
elif neg_examples: |
|
arity = neg_examples[0].count(',') + 1 |
|
|
|
|
|
vars = ", ".join([f"X{i}" for i in range(1, arity + 1)]) |
|
|
|
symbolic_judge = f""" |
|
% Dynamic evaluation predicates |
|
check({vars}) :- pos({vars}), {positive_pred}({vars}). % positive covered |
|
check({vars}) :- neg({vars}), \\+ {positive_pred}({vars}). % negative rejected |
|
|
|
% Count successful checks |
|
check_count(Count) :- |
|
(setof(({vars}), ((pos({vars}); neg({vars})), check({vars})), CorrectExamples) -> |
|
length(CorrectExamples, Count) |
|
; |
|
Count = 0 |
|
). |
|
|
|
check_all :- forall((pos({vars});neg({vars})), check({vars})). |
|
""" |
|
|
|
validation_program = re.sub(rf'\b{positive_pred}\b', 'pos', validation_program) |
|
validation_program = re.sub(rf'\b{negative_pred}\b', 'neg', validation_program) |
|
|
|
pos_negs = validation_program.count("pos(") + validation_program.count("neg(") |
|
validation_program = '\n'.join(sorted(validation_program.splitlines())) |
|
full_program = validation_program + "\n\n" + symbolic_judge + "\n\n" + rule_to_evaluate + "\n\n" |
|
|
|
with tempfile.NamedTemporaryFile(suffix='.pl', mode='w', delete=False) as f: |
|
f.write(full_program) |
|
temp_file = f.name |
|
|
|
try: |
|
eval_start_time = time.time() |
|
|
|
cmd = ['swipl', '-s', temp_file, '-g', 'check_count(Count), writeln(Count)', '-t', 'halt'] |
|
result = subprocess.run( |
|
cmd, |
|
stdout=subprocess.PIPE, |
|
stderr=subprocess.PIPE, |
|
timeout=timeout, |
|
text=True |
|
) |
|
partial_score = 0.0 if result.stdout.strip() == '' else int(result.stdout.strip()) |
|
|
|
partial_score = partial_score / pos_negs if pos_negs > 0 else 0.0 |
|
|
|
is_correct = True if partial_score == 1.0 else False |
|
|
|
error = f'Rule invalid: "{rule_to_evaluate}" exit with ' + result.stderr if result.stderr else None |
|
t1 = time.time() |
|
|
|
return { |
|
"is_correct": is_correct, |
|
"partial_score": partial_score, |
|
"syntax_valid": True, |
|
"error": error, |
|
"exec_time1": t1 - eval_start_time, |
|
} |
|
|
|
except subprocess.TimeoutExpired: |
|
logger.warning(f"Evaluation timed out after {timeout} seconds for rule: {rule_to_evaluate}...") |
|
return {"is_correct": False, "partial_score": 0.0, "syntax_valid": False, |
|
"error": f"Evaluation timed out after {timeout} seconds"} |
|
except Exception as e: |
|
logger.warning(f"Error evaluating rule '{rule_to_evaluate}' returns: '{result.stdout.strip() if result else 'No error message'}' with error: {e}") |
|
return {"is_correct": False, "partial_score": 0.0, "syntax_valid": False, |
|
"error": f"Syntactically invalid rule '{rule_to_evaluate}'"} |
|
finally: |
|
if os.path.exists(temp_file): |
|
os.remove(temp_file) |
|
|
|
def extract_ilp_from_text(text): |
|
rule_patterns = [ |
|
|
|
r'([a-zA-Z_][a-zA-Z0-9_]*\([^)]*\)\s*:-[^.]*\.)', |
|
|
|
|
|
] |
|
p_code = '' |
|
for pattern in rule_patterns: |
|
matches = re.findall(pattern, text) |
|
for match in matches: |
|
|
|
statement = match.strip() |
|
if not statement.endswith('.'): |
|
statement += '.' |
|
p_code += statement + '\n' |
|
return p_code |
|
|
|
|
|
def extract_ilp_from_text_v2(text, target_predicates=None): |
|
|
|
text = re.sub(r'\n\s*', ' ', text) |
|
|
|
preds = '|'.join([re.escape(p) for p in (target_predicates or [])]) |
|
head_pat = rf"(?:{preds})" if preds else r"[a-zA-Z_][a-zA-Z0-9_]*" |
|
|
|
rule_pattern = re.compile(rf'({head_pat}\([^()]*\)\s*:-.*?\.)') |
|
rules = set(rule_pattern.findall(text)) |
|
|
|
p_code = '' |
|
for rule in rules: |
|
|
|
statement = rule.strip() |
|
if not statement.endswith('.'): |
|
statement += '.' |
|
p_code += statement + '\n' |
|
return p_code.strip() |
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class VerifiableRewardsForScalableLogicalReasoning(evaluate.Metric): |
|
def __init__(self, config_name=None, **kwargs): |
|
""" |
|
Initializes the PrologEval metric. |
|
|
|
Args: |
|
config_name (str, optional): Name of the configuration to use. |
|
**kwargs: Additional keyword arguments. |
|
""" |
|
super().__init__(config_name=config_name, **kwargs) |
|
self.config_name = config_name or "default" |
|
self._info = self._info() |
|
self._download_and_prepare(dl_manager=None) |
|
|
|
def _info(self): |
|
return evaluate.MetricInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
features=datasets.Features({ |
|
'predictions': datasets.Value('string'), |
|
'references': { |
|
'validation_program': datasets.Value('string'), |
|
'evaluation_config': { |
|
'positive_predicate': datasets.Value('string'), |
|
'negative_predicate': datasets.Value('string') |
|
} |
|
}, |
|
}), |
|
codebase_urls=["https://github.com/AIML-TUDA/SLR-Bench"], |
|
reference_urls=["https://huggingface.co/datasets/AIML-TUDA/SLR-Bench"] |
|
) |
|
|
|
def _download_and_prepare(self, dl_manager): |
|
"""Checks if SWI-Prolog is installed or warns the user.""" |
|
try: |
|
subprocess.run( |
|
["swipl", "--version"], |
|
stdout=subprocess.PIPE, |
|
stderr=subprocess.PIPE, |
|
check=True |
|
) |
|
except (subprocess.CalledProcessError, FileNotFoundError): |
|
logger.warning( |
|
"SWI-Prolog not found. Please install it:\n" |
|
"Ubuntu/Debian: sudo apt-get install swi-prolog\n" |
|
"macOS: brew install swi-prolog\n" |
|
"Windows: download from https://www.swi-prolog.org/download/stable" |
|
) |
|
|
|
def _compute(self, predictions: list, references: list): |
|
"""Calculates the accuracy of predictions using Prolog for evaluation with multiprocessing.""" |
|
if not isinstance(predictions, list): |
|
predictions = [predictions] |
|
|
|
if len(predictions) != len(references): |
|
raise ValueError( |
|
f"Number of predictions ({len(predictions)}) and references {len(references)}) don't match") |
|
|
|
|
|
eval_inputs = [] |
|
for i, (prediction, reference) in enumerate(zip(predictions, references)): |
|
validation_program = reference.get("validation_program", reference.get("validation program")) |
|
|
|
|
|
|
|
eval_config = reference.get("evaluation_config", { |
|
"positive_predicate": "eastbound", |
|
"negative_predicate": "westbound" |
|
}) |
|
|
|
if not validation_program: |
|
raise ValueError(f"Example {i} does not contain validation program field") |
|
|
|
eval_inputs.append((prediction, validation_program, eval_config)) |
|
|
|
|
|
num_cpus = max(1, mp.cpu_count() - 1) |
|
with mp.Pool(processes=num_cpus) as pool: |
|
results = list(tqdm( |
|
pool.starmap(_evaluate_with_prolog, eval_inputs), |
|
total=len(eval_inputs), |
|
desc="Evaluating rules (parallel)" |
|
)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
partial_scores = [result["partial_score"] for result in results] |
|
correct_count = sum(1 for result in results if result["is_correct"]) |
|
syntax_valid_count = sum(1 for result in results if result["syntax_valid"]) |
|
|
|
accuracy = correct_count / len(predictions) if predictions else 0 |
|
partial_score = sum(partial_scores) / len(predictions) if partial_scores else 0 |
|
syntax_score = syntax_valid_count / len(predictions) if predictions else 0 |
|
|
|
return { |
|
"accuracy": accuracy, |
|
"partial_score": partial_score, |
|
"syntax_score": syntax_score, |
|
"detailed_results": results |
|
} |
|
|