# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Symbolic Judge: Verifiable Rewards for Logical Reasoning at Scale """ import os import subprocess import tempfile import evaluate import logging import datasets from tqdm import tqdm import time import multiprocessing as mp import re logger = logging.getLogger(__name__) _CITATION = """\ @misc{helff2025slrautomatedsynthesisframework, title={SLR: An Automated Synthesis Framework for Scalable Logical Reasoning}, author={Lukas Helff and Ahmad Omar and Felix Friedrich and Wolfgang Stammer and Antonia Wüst and Tim Woydt and Rupert Mitchell and Patrick Schramowski and Kristian Kersting}, year={2025}, eprint={2506.15787}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2506.15787}, } """ _DESCRIPTION = """\ Verifiable Rewards for Scalable Logical Reasoning (SLR) introduces a symbolic judge that provides verifiable rewards for logical reasoning tasks. To check whether a given task is solved, the symbolic judge evaluates a candidate solution (i.e., a logic rule, typically generated by a language model) using an executable validation program that encodes the task's background knowledge and labeled examples. Evaluations performed by the symbolic judge are fully verifiable and grounded in formal logic, ensuring an automatic, transparent, and reproducible standard for evaluation and reward in both supervised and reinforcement learning settings. How it Works: - Input: The symbolic judge takes as input a candidate hypothesis (logic rule) and an executable validation program containing background knowledge and examples. - Execution: The candidate rule is executed against the validation program using a Prolog interpreter. - Correctness Criteria: The rule is considered correct if it entails all positive examples and rejects all negative examples. - Metrics: The symbolic judge computes a range of evaluation metrics (detailed below). - Usage: see **Documentation tab** for details on how to use the symbolic judge in your own projects. Example usage: from evaluate import load symbolic_judge = load("AIML-TUDA/VerifiableRewardsForScalableLogicalReasoning") validation_program = \"\"\" eastbound(train0). has_car(train0, car0_1). car_num(car0_1, 1). car_color(car0_1, white). car_len(car0_1, short). has_wall(car0_1, full). westbound(train1). has_car(train1, car1_1). car_num(car1_1, 1). car_color(car1_1, yellow). car_len(car1_1, short). has_wall(car1_1, full). \"\"\" predicted_rule = "eastbound(Train):- has_car(Train, Car1), car_color(Car1, white)." results = symbolic_judge.compute( predictions=[predicted_rule], references=[{"validation_program": validation_program, "evaluation_config": { "positive_predicate": "eastbound", "negative_predicate": "westbound" }}] ) Note: A local Prolog interpreter is required to execute validation programs. """ _KWARGS_DESCRIPTION = """ Args: predictions (`list` of `str`): Each prediction should be a Prolog rule like "pred(T) :- Body." references (`list` of `dict`): Each reference should contain: - 'validation_program' (`str`): Background knowledge in Prolog syntax - 'evaluation_config' (`dict`, optional): Configuration of predicates to use for evaluation. Define: positive_predicate, and negative_predicate, the positive one should match the head of the rule to evaluate. Returns: accuracy (`float`): The proportion of predictions that correctly solve all examples. Value is between 0 and 1. partial_score (`float`): Average proportion of correctly classified examples across all predictions. Value is between 0 and 1. syntax_score (`float`): Proportion of rules with valid syntax. Value is between 0 and 1. detailed_results (`list` of `dict`): Per-example results including correctness, partial score, execution time, and any errors encountered. """ def _evaluate_with_prolog(prediction, validation_program, eval_config, timeout=5): """ Evaluates a predicted rule against the validation program using Prolog. """ # Extract configuration positive_pred = eval_config.get("positive_predicate", "eastbound") negative_pred = eval_config.get("negative_predicate", "westbound") # extract predicate from rule_to_evaluate rule_to_evaluate = extract_ilp_from_text_v2(prediction) if positive_pred not in rule_to_evaluate: logger.warning(f"Rule '{rule_to_evaluate}' does not contain positive predicate '{positive_pred}'") return { "is_correct": False, "partial_score": 0.0, "syntax_valid": False, "error": f"Invalid Syntax: Logic Rule not found for symbol '{positive_pred}'" } pos_examples = re.findall(rf'{positive_pred}\(([^)]+)\)', validation_program) neg_examples = re.findall(rf'{negative_pred}\(([^)]+)\)', validation_program) # Determine arity by counting commas in first example plus 1 arity = 1 # default to unary if pos_examples: arity = pos_examples[0].count(',') + 1 elif neg_examples: arity = neg_examples[0].count(',') + 1 # Create variables based on arity vars = ", ".join([f"X{i}" for i in range(1, arity + 1)]) symbolic_judge = f""" % Dynamic evaluation predicates check({vars}) :- pos({vars}), {positive_pred}({vars}). % positive covered check({vars}) :- neg({vars}), \\+ {positive_pred}({vars}). % negative rejected % Count successful checks check_count(Count) :- (setof(({vars}), ((pos({vars}); neg({vars})), check({vars})), CorrectExamples) -> length(CorrectExamples, Count) ; Count = 0 ). check_all :- forall((pos({vars});neg({vars})), check({vars})). """ # Add the rule to evaluate validation_program = re.sub(rf'\b{positive_pred}\b', 'pos', validation_program) validation_program = re.sub(rf'\b{negative_pred}\b', 'neg', validation_program) pos_negs = validation_program.count("pos(") + validation_program.count("neg(") validation_program = '\n'.join(sorted(validation_program.splitlines())) full_program = validation_program + "\n\n" + symbolic_judge + "\n\n" + rule_to_evaluate + "\n\n" with tempfile.NamedTemporaryFile(suffix='.pl', mode='w', delete=False) as f: f.write(full_program) temp_file = f.name try: eval_start_time = time.time() # Execute the Prolog program cmd = ['swipl', '-s', temp_file, '-g', 'check_count(Count), writeln(Count)', '-t', 'halt'] result = subprocess.run( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=timeout, text=True ) partial_score = 0.0 if result.stdout.strip() == '' else int(result.stdout.strip()) # Extract partial score from output partial_score = partial_score / pos_negs if pos_negs > 0 else 0.0 is_correct = True if partial_score == 1.0 else False error = f'Rule invalid: "{rule_to_evaluate}" exit with ' + result.stderr if result.stderr else None t1 = time.time() return { "is_correct": is_correct, "partial_score": partial_score, "syntax_valid": True, "error": error, "exec_time1": t1 - eval_start_time, } except subprocess.TimeoutExpired: logger.warning(f"Evaluation timed out after {timeout} seconds for rule: {rule_to_evaluate}...") return {"is_correct": False, "partial_score": 0.0, "syntax_valid": False, "error": f"Evaluation timed out after {timeout} seconds"} except Exception as e: logger.warning(f"Error evaluating rule '{rule_to_evaluate}' returns: '{result.stdout.strip() if result else 'No error message'}' with error: {e}") return {"is_correct": False, "partial_score": 0.0, "syntax_valid": False, "error": f"Syntactically invalid rule '{rule_to_evaluate}'"} finally: if os.path.exists(temp_file): os.remove(temp_file) def extract_ilp_from_text(text): rule_patterns = [ # Pattern with body (full rule with implication) r'([a-zA-Z_][a-zA-Z0-9_]*\([^)]*\)\s*:-[^.]*\.)', # Pattern for facts (no body) # r'([a-zA-Z_][a-zA-Z0-9_]*\([^)]*\)\s*\.)' ] p_code = '' for pattern in rule_patterns: matches = re.findall(pattern, text) for match in matches: # Ensure the rule ends with a period statement = match.strip() if not statement.endswith('.'): statement += '.' p_code += statement + '\n' return p_code def extract_ilp_from_text_v2(text, target_predicates=None): # Pre-process: collapse code blocks to single lines text = re.sub(r'\n\s*', ' ', text) # crude: flatten all to one line # Optionally restrict to only some predicates preds = '|'.join([re.escape(p) for p in (target_predicates or [])]) head_pat = rf"(?:{preds})" if preds else r"[a-zA-Z_][a-zA-Z0-9_]*" # Rule pattern, across newlines rule_pattern = re.compile(rf'({head_pat}\([^()]*\)\s*:-.*?\.)') rules = set(rule_pattern.findall(text)) # Remove rules that are also captured as facts p_code = '' for rule in rules: # Ensure the rule ends with a period statement = rule.strip() if not statement.endswith('.'): statement += '.' p_code += statement + '\n' return p_code.strip() # Ensure no trailing whitespace @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class VerifiableRewardsForScalableLogicalReasoning(evaluate.Metric): def __init__(self, config_name=None, **kwargs): """ Initializes the PrologEval metric. Args: config_name (str, optional): Name of the configuration to use. **kwargs: Additional keyword arguments. """ super().__init__(config_name=config_name, **kwargs) self.config_name = config_name or "default" self._info = self._info() self._download_and_prepare(dl_manager=None) def _info(self): return evaluate.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features({ 'predictions': datasets.Value('string'), 'references': { 'validation_program': datasets.Value('string'), 'evaluation_config': { 'positive_predicate': datasets.Value('string'), 'negative_predicate': datasets.Value('string') } }, }), codebase_urls=["https://github.com/AIML-TUDA/SLR-Bench"], reference_urls=["https://huggingface.co/datasets/AIML-TUDA/SLR-Bench"] ) def _download_and_prepare(self, dl_manager): """Checks if SWI-Prolog is installed or warns the user.""" try: subprocess.run( ["swipl", "--version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True ) except (subprocess.CalledProcessError, FileNotFoundError): logger.warning( "SWI-Prolog not found. Please install it:\n" "Ubuntu/Debian: sudo apt-get install swi-prolog\n" "macOS: brew install swi-prolog\n" "Windows: download from https://www.swi-prolog.org/download/stable" ) def _compute(self, predictions: list, references: list): """Calculates the accuracy of predictions using Prolog for evaluation with multiprocessing.""" if not isinstance(predictions, list): predictions = [predictions] if len(predictions) != len(references): raise ValueError( f"Number of predictions ({len(predictions)}) and references {len(references)}) don't match") # Prepare evaluation inputs eval_inputs = [] for i, (prediction, reference) in enumerate(zip(predictions, references)): validation_program = reference.get("validation_program", reference.get("validation program")) # Extract configuration parameters directly from reference # This is the key fix: look for config values at the top level if evaluation_config doesn't exist eval_config = reference.get("evaluation_config", { "positive_predicate": "eastbound", "negative_predicate": "westbound" }) if not validation_program: raise ValueError(f"Example {i} does not contain validation program field") eval_inputs.append((prediction, validation_program, eval_config)) # Process evaluations in parallel num_cpus = max(1, mp.cpu_count() - 1) # Leave one CPU free with mp.Pool(processes=num_cpus) as pool: results = list(tqdm( pool.starmap(_evaluate_with_prolog, eval_inputs), total=len(eval_inputs), desc="Evaluating rules (parallel)" )) # no multiprocessing in the main thread, so we can use tqdm directly # results = [] # for prediction, validation_program, eval_config in tqdm(eval_inputs, total=len(predictions), desc="Evaluating rules"): # results.append(_evaluate_with_prolog(prediction, validation_program, eval_config)) # Calculate metrics partial_scores = [result["partial_score"] for result in results] correct_count = sum(1 for result in results if result["is_correct"]) syntax_valid_count = sum(1 for result in results if result["syntax_valid"]) accuracy = correct_count / len(predictions) if predictions else 0 partial_score = sum(partial_scores) / len(predictions) if partial_scores else 0 syntax_score = syntax_valid_count / len(predictions) if predictions else 0 return { "accuracy": accuracy, "partial_score": partial_score, "syntax_score": syntax_score, "detailed_results": results }