Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,47 +1,68 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
-
from transformers import AutoProcessor,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
# تحديد الجهاز
|
| 7 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
).to(device).eval()
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
"microsoft/Florence-2-base",
|
| 17 |
-
trust_remote_code=True
|
| 18 |
-
)
|
| 19 |
|
| 20 |
-
# دالة توليد الوصف
|
| 21 |
def generate_caption(image):
|
| 22 |
if not isinstance(image, Image.Image):
|
| 23 |
image = Image.fromarray(image)
|
| 24 |
|
| 25 |
-
|
| 26 |
-
inputs = florence_processor(images=image, return_tensors="pt").to(device)
|
| 27 |
-
|
| 28 |
-
# توليد النص
|
| 29 |
generated_ids = florence_model.generate(
|
|
|
|
| 30 |
pixel_values=inputs["pixel_values"],
|
| 31 |
max_new_tokens=1024,
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
io.launch(debug=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import subprocess
|
| 3 |
import torch
|
| 4 |
from PIL import Image
|
| 5 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 6 |
+
|
| 7 |
+
# import os
|
| 8 |
+
# import random
|
| 9 |
+
# from gradio_client import Client
|
| 10 |
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 13 |
+
|
| 14 |
+
# Initialize Florence model
|
| 15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
+
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
| 17 |
+
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
| 18 |
|
| 19 |
+
# api_key = os.getenv("HF_READ_TOKEN")
|
|
|
|
|
|
|
|
|
|
| 20 |
|
|
|
|
| 21 |
def generate_caption(image):
|
| 22 |
if not isinstance(image, Image.Image):
|
| 23 |
image = Image.fromarray(image)
|
| 24 |
|
| 25 |
+
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
|
|
|
|
|
|
|
|
|
|
| 26 |
generated_ids = florence_model.generate(
|
| 27 |
+
input_ids=inputs["input_ids"],
|
| 28 |
pixel_values=inputs["pixel_values"],
|
| 29 |
max_new_tokens=1024,
|
| 30 |
+
early_stopping=False,
|
| 31 |
+
do_sample=False,
|
| 32 |
+
num_beams=3,
|
| 33 |
)
|
| 34 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 35 |
+
parsed_answer = florence_processor.post_process_generation(
|
| 36 |
+
generated_text,
|
| 37 |
+
task="<MORE_DETAILED_CAPTION>",
|
| 38 |
+
image_size=(image.width, image.height)
|
| 39 |
+
)
|
| 40 |
+
prompt = parsed_answer["<MORE_DETAILED_CAPTION>"]
|
| 41 |
+
print("\nGeneration completed!:"+ prompt)
|
| 42 |
+
return prompt
|
| 43 |
+
# yield prompt, None
|
| 44 |
+
# image_path = generate_image(prompt,random.randint(0, 4294967296))
|
| 45 |
+
# yield prompt, image_path
|
| 46 |
|
| 47 |
+
# def generate_image(prompt, seed=42, width=1024, height=1024):
|
| 48 |
+
# try:
|
| 49 |
+
# result = Client("KingNish/Realtime-FLUX", hf_token=api_key).predict(
|
| 50 |
+
# prompt=prompt,
|
| 51 |
+
# seed=seed,
|
| 52 |
+
# width=width,
|
| 53 |
+
# height=height,
|
| 54 |
+
# api_name="/generate_image"
|
| 55 |
+
# )
|
| 56 |
+
# # Extract the image path from the result tuple
|
| 57 |
+
# image_path = result[0]
|
| 58 |
+
# return image_path
|
| 59 |
+
# except Exception as e:
|
| 60 |
+
# raise Exception(f"Error generating image: {str(e)}")
|
| 61 |
+
|
| 62 |
+
io = gr.Interface(generate_caption,
|
| 63 |
+
inputs=[gr.Image(label="Input Image")],
|
| 64 |
+
outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True),
|
| 65 |
+
# gr.Image(label="Output Image")
|
| 66 |
+
]
|
| 67 |
+
)
|
| 68 |
io.launch(debug=True)
|