Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
#
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
|
@@ -13,7 +13,7 @@ import traceback
|
|
| 13 |
labels = ["Drawings", "Hentai", "Neutral", "Porn", "Sexy"]
|
| 14 |
theme_color = "#6C5B7B"
|
| 15 |
|
| 16 |
-
# ---------------- MODEL
|
| 17 |
class Classifier(nn.Module):
|
| 18 |
def __init__(self):
|
| 19 |
super().__init__()
|
|
@@ -38,39 +38,23 @@ preprocess = transforms.Compose([
|
|
| 38 |
std =[0.229,0.224,0.225])
|
| 39 |
])
|
| 40 |
|
| 41 |
-
# Carica pesi (stesso file che usavi)
|
| 42 |
model = Classifier()
|
| 43 |
model.load_state_dict(torch.load("classify_nsfw_v3.0.pth", map_location="cpu"))
|
| 44 |
model.eval()
|
| 45 |
|
| 46 |
-
# ---------------- FUNZIONE UNICA
|
| 47 |
def predict(base64_input: str):
|
| 48 |
-
"""
|
| 49 |
-
Unico input dell'API: stringa base64 (es. "data:image/jpeg;base64,...")
|
| 50 |
-
Ritorna: (label_str, {label:prob})
|
| 51 |
-
"""
|
| 52 |
try:
|
| 53 |
if not base64_input or not isinstance(base64_input, str):
|
| 54 |
return "Input base64 mancante o non valido", {}
|
| 55 |
|
| 56 |
-
# rimuovi eventuale prefisso data:image...
|
| 57 |
if base64_input.startswith("data:image"):
|
| 58 |
base64_input = base64_input.split(",", 1)[1]
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
img_bytes = base64.b64decode(base64_input)
|
| 63 |
-
except Exception as e:
|
| 64 |
-
return f"Errore decodifica base64: {e}", {}
|
| 65 |
|
| 66 |
-
|
| 67 |
-
try:
|
| 68 |
-
img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
| 69 |
-
except Exception as e:
|
| 70 |
-
return f"Errore apertura immagine: {e}", {}
|
| 71 |
-
|
| 72 |
-
# preprocess + inferenza
|
| 73 |
-
img_tensor = preprocess(img).unsqueeze(0) # 1x3x224x224
|
| 74 |
with torch.no_grad():
|
| 75 |
logits = model(img_tensor)
|
| 76 |
probs = torch.nn.functional.softmax(logits[0], dim=0)
|
|
@@ -82,56 +66,45 @@ def predict(base64_input: str):
|
|
| 82 |
except Exception:
|
| 83 |
return f"Unhandled error:\n{traceback.format_exc()}", {}
|
| 84 |
|
| 85 |
-
# ----------------
|
| 86 |
def image_to_base64(img: Image.Image):
|
| 87 |
-
"""
|
| 88 |
-
Converte PIL image in data:image/jpeg;base64,...
|
| 89 |
-
(usato dall'UI: caricamento immagine -> si popola la textbox base64)
|
| 90 |
-
"""
|
| 91 |
if img is None:
|
| 92 |
return ""
|
| 93 |
-
|
| 94 |
-
img.save(
|
| 95 |
-
|
| 96 |
-
return "data:image/jpeg;base64," + b64
|
| 97 |
|
| 98 |
def clear_box():
|
| 99 |
return ""
|
| 100 |
|
| 101 |
-
# ---------------- UI
|
| 102 |
-
with gr.Blocks(title="NSFW Image Classifier (
|
| 103 |
gr.HTML(f"""
|
| 104 |
<div style="padding:12px; background:linear-gradient(135deg,#f8f9fa 0%,#e9ecef 100%); border-radius:8px;">
|
| 105 |
<h2 style="color:{theme_color}; margin:0;">🎨 NSFW Image Classifier</h2>
|
| 106 |
-
<p style="margin:6px 0 0 0;">Carica un'immagine oppure incolla la base64. L'API
|
| 107 |
</div>
|
| 108 |
""")
|
| 109 |
with gr.Row():
|
| 110 |
with gr.Column(scale=2):
|
| 111 |
-
image_input = gr.Image(label="📷 Carica immagine (
|
| 112 |
-
base64_input = gr.Textbox(label="📤 Base64 (API)
|
| 113 |
-
|
| 114 |
with gr.Row():
|
| 115 |
-
analyze_btn = gr.Button("✨ Analizza
|
| 116 |
clear_btn = gr.Button("🔄 Pulisci")
|
| 117 |
with gr.Column(scale=1):
|
| 118 |
label_output = gr.Textbox(label="Classe predetta", interactive=False)
|
| 119 |
result_display = gr.Label(label="Distribuzione probabilità", num_top_classes=len(labels))
|
| 120 |
|
| 121 |
-
#
|
| 122 |
image_input.change(fn=image_to_base64, inputs=image_input, outputs=base64_input)
|
| 123 |
|
| 124 |
-
#
|
| 125 |
-
|
| 126 |
-
base64_input.change(fn=predict, inputs=base64_input, outputs=[label_output, result_display], api_name="predict")
|
| 127 |
-
|
| 128 |
-
# pulsante per analizzare manualmente (usa la base64 contenuta nella textbox)
|
| 129 |
-
analyze_btn.click(fn=predict, inputs=base64_input, outputs=[label_output, result_display])
|
| 130 |
|
| 131 |
clear_btn.click(fn=clear_box, inputs=None, outputs=base64_input)
|
| 132 |
|
| 133 |
-
# ----------------
|
| 134 |
if __name__ == "__main__":
|
| 135 |
-
|
| 136 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=True)
|
| 137 |
-
|
|
|
|
| 1 |
+
# nsfw_app_api_only.py
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
|
|
|
| 13 |
labels = ["Drawings", "Hentai", "Neutral", "Porn", "Sexy"]
|
| 14 |
theme_color = "#6C5B7B"
|
| 15 |
|
| 16 |
+
# ---------------- MODEL ----------------
|
| 17 |
class Classifier(nn.Module):
|
| 18 |
def __init__(self):
|
| 19 |
super().__init__()
|
|
|
|
| 38 |
std =[0.229,0.224,0.225])
|
| 39 |
])
|
| 40 |
|
|
|
|
| 41 |
model = Classifier()
|
| 42 |
model.load_state_dict(torch.load("classify_nsfw_v3.0.pth", map_location="cpu"))
|
| 43 |
model.eval()
|
| 44 |
|
| 45 |
+
# ---------------- FUNZIONE UNICA ----------------
|
| 46 |
def predict(base64_input: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
try:
|
| 48 |
if not base64_input or not isinstance(base64_input, str):
|
| 49 |
return "Input base64 mancante o non valido", {}
|
| 50 |
|
|
|
|
| 51 |
if base64_input.startswith("data:image"):
|
| 52 |
base64_input = base64_input.split(",", 1)[1]
|
| 53 |
|
| 54 |
+
img_bytes = base64.b64decode(base64_input)
|
| 55 |
+
img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
img_tensor = preprocess(img).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
with torch.no_grad():
|
| 59 |
logits = model(img_tensor)
|
| 60 |
probs = torch.nn.functional.softmax(logits[0], dim=0)
|
|
|
|
| 66 |
except Exception:
|
| 67 |
return f"Unhandled error:\n{traceback.format_exc()}", {}
|
| 68 |
|
| 69 |
+
# ---------------- Helpers ----------------
|
| 70 |
def image_to_base64(img: Image.Image):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
if img is None:
|
| 72 |
return ""
|
| 73 |
+
buf = io.BytesIO()
|
| 74 |
+
img.save(buf, format="JPEG", quality=90)
|
| 75 |
+
return "data:image/jpeg;base64," + base64.b64encode(buf.getvalue()).decode("utf-8")
|
|
|
|
| 76 |
|
| 77 |
def clear_box():
|
| 78 |
return ""
|
| 79 |
|
| 80 |
+
# ---------------- UI ----------------
|
| 81 |
+
with gr.Blocks(title="NSFW Image Classifier (API standard)") as demo:
|
| 82 |
gr.HTML(f"""
|
| 83 |
<div style="padding:12px; background:linear-gradient(135deg,#f8f9fa 0%,#e9ecef 100%); border-radius:8px;">
|
| 84 |
<h2 style="color:{theme_color}; margin:0;">🎨 NSFW Image Classifier</h2>
|
| 85 |
+
<p style="margin:6px 0 0 0;">Carica un'immagine oppure incolla la base64. L'API espone solo <b>/api/predict</b>.</p>
|
| 86 |
</div>
|
| 87 |
""")
|
| 88 |
with gr.Row():
|
| 89 |
with gr.Column(scale=2):
|
| 90 |
+
image_input = gr.Image(label="📷 Carica immagine (convertita in base64)", type="pil")
|
| 91 |
+
base64_input = gr.Textbox(label="📤 Base64 (API)", lines=6,
|
| 92 |
+
placeholder="Incolla qui la stringa base64...")
|
| 93 |
with gr.Row():
|
| 94 |
+
analyze_btn = gr.Button("✨ Analizza")
|
| 95 |
clear_btn = gr.Button("🔄 Pulisci")
|
| 96 |
with gr.Column(scale=1):
|
| 97 |
label_output = gr.Textbox(label="Classe predetta", interactive=False)
|
| 98 |
result_display = gr.Label(label="Distribuzione probabilità", num_top_classes=len(labels))
|
| 99 |
|
| 100 |
+
# Carica immagine -> converte in base64 e riempie textbox
|
| 101 |
image_input.change(fn=image_to_base64, inputs=image_input, outputs=base64_input)
|
| 102 |
|
| 103 |
+
# Analizza manualmente (API unica)
|
| 104 |
+
analyze_btn.click(fn=predict, inputs=base64_input, outputs=[label_output, result_display], api_name="predict")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
clear_btn.click(fn=clear_box, inputs=None, outputs=base64_input)
|
| 107 |
|
| 108 |
+
# ---------------- Launch ----------------
|
| 109 |
if __name__ == "__main__":
|
| 110 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|