Update app.py
Browse files
app.py
CHANGED
|
@@ -1,115 +1,46 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
from torchvision import transforms
|
| 5 |
-
from torchvision.models import resnet18
|
| 6 |
-
from PIL import Image
|
| 7 |
import base64
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
# ---------------- CONFIG ----------------
|
| 11 |
-
labels = ["Drawings", "Hentai", "Neutral", "Porn", "Sexy"]
|
| 12 |
-
theme_color = "#6C5B7B"
|
| 13 |
-
|
| 14 |
-
# ---------------- MODEL ----------------
|
| 15 |
-
class Classifier(nn.Module):
|
| 16 |
-
def __init__(self):
|
| 17 |
-
super().__init__()
|
| 18 |
-
self.cnn_layers = resnet18(weights=None)
|
| 19 |
-
self.fc_layers = nn.Sequential(
|
| 20 |
-
nn.Linear(1000, 512),
|
| 21 |
-
nn.Dropout(0.3),
|
| 22 |
-
nn.Linear(512, 128),
|
| 23 |
-
nn.ReLU(),
|
| 24 |
-
nn.Linear(128, len(labels))
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
def forward(self, x):
|
| 28 |
-
x = self.cnn_layers(x)
|
| 29 |
-
x = self.fc_layers(x)
|
| 30 |
-
return x
|
| 31 |
-
|
| 32 |
-
preprocess = transforms.Compose([
|
| 33 |
-
transforms.Resize((224,224)),
|
| 34 |
-
transforms.ToTensor(),
|
| 35 |
-
transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
|
| 36 |
-
])
|
| 37 |
-
|
| 38 |
-
model = Classifier()
|
| 39 |
-
model.load_state_dict(torch.load("classify_nsfw_v3.0.pth", map_location="cpu"))
|
| 40 |
-
model.eval()
|
| 41 |
|
| 42 |
-
#
|
| 43 |
-
def
|
| 44 |
-
"""
|
| 45 |
-
Unico input: stringa base64 (da API o da UI).
|
| 46 |
-
"""
|
| 47 |
try:
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
except Exception as e:
|
| 64 |
-
return f"
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
""
|
| 71 |
-
buffered = io.BytesIO()
|
| 72 |
-
img.save(buffered, format="JPEG")
|
| 73 |
-
img_b64 = base64.b64encode(buffered.getvalue()).decode()
|
| 74 |
-
return "data:image/jpeg;base64," + img_b64
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
# ---------------- INTERFACCIA ----------------
|
| 80 |
-
with gr.Blocks(title="NSFW Image Classifier") as demo:
|
| 81 |
-
|
| 82 |
-
gr.HTML(f"""
|
| 83 |
-
<div style="padding:10px; background:linear-gradient(135deg,#f8f9fa 0%,#e9ecef 100%); border-radius:10px;">
|
| 84 |
-
<h2 style="color:{theme_color};">🎨 NSFW Image Classifier</h2>
|
| 85 |
-
<p>Carica un'immagine o incolla la stringa base64.<br>
|
| 86 |
-
L'API espone <code>/run/predict</code> e accetta <b>solo base64</b>.</p>
|
| 87 |
-
</div>
|
| 88 |
-
""")
|
| 89 |
|
| 90 |
with gr.Row():
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
base64_input = gr.Textbox(
|
| 94 |
-
label="📤 Base64 dell'immagine (API)",
|
| 95 |
-
lines=6,
|
| 96 |
-
placeholder="Incolla qui la stringa base64..."
|
| 97 |
-
)
|
| 98 |
-
with gr.Row():
|
| 99 |
-
submit_btn = gr.Button("✨ Analizza", variant="primary")
|
| 100 |
-
clear_btn = gr.Button("🔄 Pulisci", variant="secondary")
|
| 101 |
-
|
| 102 |
-
with gr.Column(scale=1):
|
| 103 |
-
label_output = gr.Textbox(label="Classe predetta", interactive=False)
|
| 104 |
-
result_display = gr.Label(label="Distribuzione probabilità", num_top_classes=len(labels))
|
| 105 |
|
| 106 |
-
|
| 107 |
-
img_input.change(fn=image_to_base64, inputs=img_input, outputs=base64_input)
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
clear_btn.click(fn=clear_all, inputs=None, outputs=base64_input)
|
| 112 |
|
| 113 |
-
#
|
| 114 |
-
|
| 115 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=True)
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import base64
|
| 3 |
+
from io import BytesIO
|
| 4 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Funzione di analisi immagine base64
|
| 7 |
+
def analyze_base64(b64_string: str):
|
|
|
|
|
|
|
|
|
|
| 8 |
try:
|
| 9 |
+
# Decodifica
|
| 10 |
+
if b64_string.startswith("data:image"):
|
| 11 |
+
b64_string = b64_string.split(",")[1]
|
| 12 |
+
|
| 13 |
+
image_data = base64.b64decode(b64_string)
|
| 14 |
+
img = Image.open(BytesIO(image_data))
|
| 15 |
+
|
| 16 |
+
# Qui metti il tuo modello / logica di analisi
|
| 17 |
+
# Per esempio: restituisco dimensioni e formato
|
| 18 |
+
result = {
|
| 19 |
+
"width": img.width,
|
| 20 |
+
"height": img.height,
|
| 21 |
+
"format": img.format
|
| 22 |
+
}
|
| 23 |
+
return f"Analisi completata: {result}"
|
| 24 |
except Exception as e:
|
| 25 |
+
return f"Errore: {str(e)}"
|
| 26 |
|
| 27 |
+
# Se carichi da web → converto subito in base64
|
| 28 |
+
def file_to_base64(img: Image.Image):
|
| 29 |
+
buffered = BytesIO()
|
| 30 |
+
img.save(buffered, format="PNG")
|
| 31 |
+
return "data:image/png;base64," + base64.b64encode(buffered.getvalue()).decode()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
with gr.Blocks() as demo:
|
| 34 |
+
gr.Markdown("## Analisi Immagini via Base64")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
with gr.Row():
|
| 37 |
+
img_input = gr.Image(type="pil", label="Carica immagine (verrà convertita in base64)")
|
| 38 |
+
b64_input = gr.Textbox(label="📤 Base64 dell'immagine (API)", lines=6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
output = gr.Textbox(label="Risultato analisi")
|
|
|
|
| 41 |
|
| 42 |
+
img_input.change(fn=file_to_base64, inputs=img_input, outputs=b64_input)
|
| 43 |
+
b64_input.submit(fn=analyze_base64, inputs=b64_input, outputs=output)
|
|
|
|
| 44 |
|
| 45 |
+
# Avvio server
|
| 46 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|