Spaces:
Sleeping
Sleeping
Muhammad Anas Akhtar
commited on
File Updated
Browse files
app.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
|
| 5 |
+
# Initialize the summarization pipeline
|
| 6 |
+
Text_summary = pipeline("summarization", model="facebook/bart-large-cnn", torch_dtype=torch.bfloat16)
|
| 7 |
+
|
| 8 |
+
# Define a function to estimate token count from word count
|
| 9 |
+
def estimate_tokens(word_count):
|
| 10 |
+
# Approximate tokens as 1.5 times the word count
|
| 11 |
+
return int(word_count * 1.5)
|
| 12 |
+
|
| 13 |
+
# Define the summarization function
|
| 14 |
+
def summary(input, word_count):
|
| 15 |
+
# Convert word count to token count
|
| 16 |
+
max_length = estimate_tokens(word_count)
|
| 17 |
+
min_length = max(10, max_length // 2) # Set a reasonable minimum length
|
| 18 |
+
output = Text_summary(input, max_length=max_length, min_length=min_length)
|
| 19 |
+
return output[0]['summary_text']
|
| 20 |
+
|
| 21 |
+
# Close any existing Gradio instances
|
| 22 |
+
gr.close_all()
|
| 23 |
+
|
| 24 |
+
# Set up the Gradio interface
|
| 25 |
+
Demo = gr.Interface(
|
| 26 |
+
fn=summary,
|
| 27 |
+
inputs=[
|
| 28 |
+
gr.Textbox(label="Input Text To Summarize", lines=20),
|
| 29 |
+
gr.Slider(
|
| 30 |
+
label="Summary Length (Words Approx.)",
|
| 31 |
+
minimum=50, maximum=300, step=10, value=130
|
| 32 |
+
)
|
| 33 |
+
],
|
| 34 |
+
outputs=[gr.Textbox(label="Summarized Text", lines=4)],
|
| 35 |
+
title="Text_Summarize_App",
|
| 36 |
+
description="THIS APPLICATION WILL BE USED TO SUMMARIZE THE TEXT"
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Launch the app with a public link
|
| 40 |
+
Demo.launch(share=True)
|