Spaces:
Running
on
Zero
Running
on
Zero
add base and zjg
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- app.py +80 -0
- asset/F01_中立_20054.wav +3 -0
- asset/sg_017_090.wav +3 -0
- cosyvoice/__init__.py +0 -0
- cosyvoice/__pycache__/__init__.cpython-310.pyc +0 -0
- cosyvoice/bin/average_model.py +93 -0
- cosyvoice/bin/export_jit.py +103 -0
- cosyvoice/bin/export_onnx.py +121 -0
- cosyvoice/bin/inference_deprecated.py +126 -0
- cosyvoice/bin/train.py +202 -0
- cosyvoice/cli/__init__.py +0 -0
- cosyvoice/cli/__pycache__/__init__.cpython-310.pyc +0 -0
- cosyvoice/cli/__pycache__/cosyvoice.cpython-310.pyc +0 -0
- cosyvoice/cli/__pycache__/frontend.cpython-310.pyc +0 -0
- cosyvoice/cli/__pycache__/model.cpython-310.pyc +0 -0
- cosyvoice/cli/cosyvoice.py +194 -0
- cosyvoice/cli/frontend.py +215 -0
- cosyvoice/cli/model.py +386 -0
- cosyvoice/dataset/__init__.py +0 -0
- cosyvoice/dataset/__pycache__/__init__.cpython-310.pyc +0 -0
- cosyvoice/dataset/__pycache__/custom_processor.cpython-310.pyc +0 -0
- cosyvoice/dataset/__pycache__/dataset.cpython-310.pyc +0 -0
- cosyvoice/dataset/__pycache__/processor.cpython-310.pyc +0 -0
- cosyvoice/dataset/custom_processor.py +494 -0
- cosyvoice/dataset/dataset.py +151 -0
- cosyvoice/dataset/processor.py +434 -0
- cosyvoice/flow/__pycache__/decoder.cpython-310.pyc +0 -0
- cosyvoice/flow/__pycache__/flow.cpython-310.pyc +0 -0
- cosyvoice/flow/__pycache__/flow_matching.cpython-310.pyc +0 -0
- cosyvoice/flow/decoder.py +494 -0
- cosyvoice/flow/flow.py +281 -0
- cosyvoice/flow/flow_matching.py +227 -0
- cosyvoice/flow/length_regulator.py +70 -0
- cosyvoice/hifigan/__pycache__/discriminator.cpython-310.pyc +0 -0
- cosyvoice/hifigan/__pycache__/f0_predictor.cpython-310.pyc +0 -0
- cosyvoice/hifigan/__pycache__/generator.cpython-310.pyc +0 -0
- cosyvoice/hifigan/__pycache__/hifigan.cpython-310.pyc +0 -0
- cosyvoice/hifigan/discriminator.py +230 -0
- cosyvoice/hifigan/f0_predictor.py +58 -0
- cosyvoice/hifigan/generator.py +582 -0
- cosyvoice/hifigan/hifigan.py +67 -0
- cosyvoice/llm/__pycache__/llm.cpython-310.pyc +0 -0
- cosyvoice/llm/llm.py +611 -0
- cosyvoice/tokenizer/__pycache__/tokenizer.cpython-310.pyc +0 -0
- cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +0 -0
- cosyvoice/tokenizer/tokenizer.py +279 -0
- cosyvoice/transformer/__init__.py +0 -0
- cosyvoice/transformer/__pycache__/__init__.cpython-310.pyc +0 -0
- cosyvoice/transformer/__pycache__/activation.cpython-310.pyc +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import opencc
|
5 |
+
|
6 |
+
# 添加第三方库路径
|
7 |
+
sys.path.append('third_party/Matcha-TTS')
|
8 |
+
|
9 |
+
from cosyvoice.cli.cosyvoice import CosyVoice2
|
10 |
+
from cosyvoice.utils.file_utils import load_wav
|
11 |
+
|
12 |
+
# 繁简转换
|
13 |
+
converter = opencc.OpenCC('s2t.json')
|
14 |
+
|
15 |
+
# 加载模型
|
16 |
+
cosyvoice_base = CosyVoice2(
|
17 |
+
'ASLP-lab/WSYue-TTS-Cosyvoice2',
|
18 |
+
load_jit=False, load_trt=False, load_vllm=False, fp16=False
|
19 |
+
)
|
20 |
+
cosyvoice_zjg = CosyVoice2(
|
21 |
+
'ASLP-lab/WSYue-TTS-Cosyvoice2-zjg',
|
22 |
+
load_jit=False, load_trt=False, load_vllm=False, fp16=False
|
23 |
+
)
|
24 |
+
# cosyvoice_biaobei = CosyVoice2(
|
25 |
+
# 'pretrained_models/CosyVoice2-yue-biaobei',
|
26 |
+
# load_jit=False, load_trt=False, load_vllm=False, fp16=False
|
27 |
+
# )
|
28 |
+
|
29 |
+
def tts_inference(model_choice, text, prompt_audio):
|
30 |
+
# 选择模型和默认音频
|
31 |
+
if model_choice == "CosyVoice2-张悦楷粤语评书":
|
32 |
+
model = cosyvoice_zjg
|
33 |
+
prompt_audio = "asset/default_zjg.wav"
|
34 |
+
elif model_choice == "CosyVoice2-精品女音":
|
35 |
+
model = cosyvoice_base
|
36 |
+
prompt_audio = "asset/default_biaobei.wav"
|
37 |
+
elif model_choice == "CosyVoice2-base":
|
38 |
+
model = cosyvoice_base
|
39 |
+
if prompt_audio is None:
|
40 |
+
return None, "请上传参考音频"
|
41 |
+
else:
|
42 |
+
return None, "未知模型"
|
43 |
+
|
44 |
+
# 繁简转换
|
45 |
+
text = converter.convert(text)
|
46 |
+
prompt_speech_16k = load_wav(prompt_audio, 16000)
|
47 |
+
|
48 |
+
all_speech = []
|
49 |
+
for _, j in enumerate(
|
50 |
+
model.inference_instruct2(
|
51 |
+
text, "用粤语说这句话", prompt_speech_16k, stream=False
|
52 |
+
)
|
53 |
+
):
|
54 |
+
all_speech.append(j['tts_speech'])
|
55 |
+
|
56 |
+
concatenated_speech = torch.cat(all_speech, dim=1)
|
57 |
+
audio_numpy = concatenated_speech.squeeze(0).cpu().numpy()
|
58 |
+
sample_rate = model.sample_rate
|
59 |
+
|
60 |
+
return (sample_rate, audio_numpy), f"生成成功:{text}"
|
61 |
+
|
62 |
+
|
63 |
+
# ---- Gradio Interface ----
|
64 |
+
demo = gr.Interface(
|
65 |
+
fn=tts_inference,
|
66 |
+
inputs=[
|
67 |
+
gr.Dropdown(
|
68 |
+
["CosyVoice2-base", "CosyVoice2-张悦楷粤语评书", "CosyVoice2-精品女音"],
|
69 |
+
label="选择模型", value="CosyVoice2-base"
|
70 |
+
),
|
71 |
+
gr.Textbox(lines=2, label="输入文本"),
|
72 |
+
gr.Audio(source="upload", type="filepath", label="上传参考音频(仅 CosyVoice2-base 必需)")
|
73 |
+
],
|
74 |
+
outputs=[
|
75 |
+
gr.Audio(type="numpy", label="生成的语音"),
|
76 |
+
gr.Textbox(label="状态信息")
|
77 |
+
]
|
78 |
+
)
|
79 |
+
|
80 |
+
demo.launch()
|
asset/F01_中立_20054.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0dfb5cd8ebda4ff5d385e8bbdbf5a24f1a76f3f2f562afba1c807d3f3f8444a6
|
3 |
+
size 1050752
|
asset/sg_017_090.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ae70a87f4c9714d4ab5d1b176137ffde74520dd82140c31ef3b8a9f7d5ef260
|
3 |
+
size 971564
|
cosyvoice/__init__.py
ADDED
File without changes
|
cosyvoice/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (152 Bytes). View file
|
|
cosyvoice/bin/average_model.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Di Wu)
|
2 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
import argparse
|
18 |
+
import glob
|
19 |
+
|
20 |
+
import yaml
|
21 |
+
import torch
|
22 |
+
|
23 |
+
|
24 |
+
def get_args():
|
25 |
+
parser = argparse.ArgumentParser(description='average model')
|
26 |
+
parser.add_argument('--dst_model', required=True, help='averaged model')
|
27 |
+
parser.add_argument('--src_path',
|
28 |
+
required=True,
|
29 |
+
help='src model path for average')
|
30 |
+
parser.add_argument('--val_best',
|
31 |
+
action="store_true",
|
32 |
+
help='averaged model')
|
33 |
+
parser.add_argument('--num',
|
34 |
+
default=5,
|
35 |
+
type=int,
|
36 |
+
help='nums for averaged model')
|
37 |
+
|
38 |
+
args = parser.parse_args()
|
39 |
+
print(args)
|
40 |
+
return args
|
41 |
+
|
42 |
+
|
43 |
+
def main():
|
44 |
+
args = get_args()
|
45 |
+
val_scores = []
|
46 |
+
if args.val_best:
|
47 |
+
yamls = glob.glob('{}/*.yaml'.format(args.src_path))
|
48 |
+
yamls = [
|
49 |
+
f for f in yamls
|
50 |
+
if not (os.path.basename(f).startswith('train')
|
51 |
+
or os.path.basename(f).startswith('init'))
|
52 |
+
]
|
53 |
+
for y in yamls:
|
54 |
+
with open(y, 'r') as f:
|
55 |
+
dic_yaml = yaml.load(f, Loader=yaml.BaseLoader)
|
56 |
+
loss = float(dic_yaml['loss_dict']['loss'])
|
57 |
+
epoch = int(dic_yaml['epoch'])
|
58 |
+
step = int(dic_yaml['step'])
|
59 |
+
tag = dic_yaml['tag']
|
60 |
+
val_scores += [[epoch, step, loss, tag]]
|
61 |
+
sorted_val_scores = sorted(val_scores,
|
62 |
+
key=lambda x: x[2],
|
63 |
+
reverse=False)
|
64 |
+
print("best val (epoch, step, loss, tag) = " +
|
65 |
+
str(sorted_val_scores[:args.num]))
|
66 |
+
path_list = [
|
67 |
+
args.src_path + '/epoch_{}_whole.pt'.format(score[0])
|
68 |
+
for score in sorted_val_scores[:args.num]
|
69 |
+
]
|
70 |
+
print(path_list)
|
71 |
+
avg = {}
|
72 |
+
num = args.num
|
73 |
+
assert num == len(path_list)
|
74 |
+
for path in path_list:
|
75 |
+
print('Processing {}'.format(path))
|
76 |
+
states = torch.load(path, map_location=torch.device('cpu'))
|
77 |
+
for k in states.keys():
|
78 |
+
if k not in ['step', 'epoch']:
|
79 |
+
if k not in avg.keys():
|
80 |
+
avg[k] = states[k].clone()
|
81 |
+
else:
|
82 |
+
avg[k] += states[k]
|
83 |
+
# average
|
84 |
+
for k in avg.keys():
|
85 |
+
if avg[k] is not None:
|
86 |
+
# pytorch 1.6 use true_divide instead of /=
|
87 |
+
avg[k] = torch.true_divide(avg[k], num)
|
88 |
+
print('Saving to {}'.format(args.dst_model))
|
89 |
+
torch.save(avg, args.dst_model)
|
90 |
+
|
91 |
+
|
92 |
+
if __name__ == '__main__':
|
93 |
+
main()
|
cosyvoice/bin/export_jit.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
import os
|
21 |
+
import sys
|
22 |
+
import torch
|
23 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
24 |
+
sys.path.append('{}/../..'.format(ROOT_DIR))
|
25 |
+
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
26 |
+
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
27 |
+
from cosyvoice.utils.file_utils import logging
|
28 |
+
|
29 |
+
|
30 |
+
def get_args():
|
31 |
+
parser = argparse.ArgumentParser(description='export your model for deployment')
|
32 |
+
parser.add_argument('--model_dir',
|
33 |
+
type=str,
|
34 |
+
default='pretrained_models/CosyVoice-300M',
|
35 |
+
help='local path')
|
36 |
+
args = parser.parse_args()
|
37 |
+
print(args)
|
38 |
+
return args
|
39 |
+
|
40 |
+
|
41 |
+
def get_optimized_script(model, preserved_attrs=[]):
|
42 |
+
script = torch.jit.script(model)
|
43 |
+
if preserved_attrs != []:
|
44 |
+
script = torch.jit.freeze(script, preserved_attrs=preserved_attrs)
|
45 |
+
else:
|
46 |
+
script = torch.jit.freeze(script)
|
47 |
+
script = torch.jit.optimize_for_inference(script)
|
48 |
+
return script
|
49 |
+
|
50 |
+
|
51 |
+
def main():
|
52 |
+
args = get_args()
|
53 |
+
logging.basicConfig(level=logging.DEBUG,
|
54 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
55 |
+
|
56 |
+
torch._C._jit_set_fusion_strategy([('STATIC', 1)])
|
57 |
+
torch._C._jit_set_profiling_mode(False)
|
58 |
+
torch._C._jit_set_profiling_executor(False)
|
59 |
+
|
60 |
+
# try:
|
61 |
+
# model = CosyVoice(args.model_dir)
|
62 |
+
# except Exception:
|
63 |
+
try:
|
64 |
+
model = CosyVoice2(args.model_dir)
|
65 |
+
except Exception:
|
66 |
+
raise TypeError('no valid model_type!')
|
67 |
+
|
68 |
+
if not isinstance(model, CosyVoice2):
|
69 |
+
# 1. export llm text_encoder
|
70 |
+
llm_text_encoder = model.model.llm.text_encoder
|
71 |
+
script = get_optimized_script(llm_text_encoder)
|
72 |
+
script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir))
|
73 |
+
script = get_optimized_script(llm_text_encoder.half())
|
74 |
+
script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
|
75 |
+
logging.info('successfully export llm_text_encoder')
|
76 |
+
|
77 |
+
# 2. export llm llm
|
78 |
+
llm_llm = model.model.llm.llm
|
79 |
+
script = get_optimized_script(llm_llm, ['forward_chunk'])
|
80 |
+
script.save('{}/llm.llm.fp32.zip'.format(args.model_dir))
|
81 |
+
script = get_optimized_script(llm_llm.half(), ['forward_chunk'])
|
82 |
+
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
|
83 |
+
logging.info('successfully export llm_llm')
|
84 |
+
|
85 |
+
# 3. export flow encoder
|
86 |
+
flow_encoder = model.model.flow.encoder
|
87 |
+
script = get_optimized_script(flow_encoder)
|
88 |
+
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
89 |
+
script = get_optimized_script(flow_encoder.half())
|
90 |
+
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
91 |
+
logging.info('successfully export flow_encoder')
|
92 |
+
else:
|
93 |
+
# 3. export flow encoder
|
94 |
+
flow_encoder = model.model.flow.encoder
|
95 |
+
script = get_optimized_script(flow_encoder)
|
96 |
+
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
97 |
+
script = get_optimized_script(flow_encoder.half())
|
98 |
+
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
99 |
+
logging.info('successfully export flow_encoder')
|
100 |
+
|
101 |
+
|
102 |
+
if __name__ == '__main__':
|
103 |
+
main()
|
cosyvoice/bin/export_onnx.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, [email protected])
|
2 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from __future__ import print_function
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import logging
|
20 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
21 |
+
import os
|
22 |
+
import sys
|
23 |
+
import onnxruntime
|
24 |
+
import random
|
25 |
+
import torch
|
26 |
+
from tqdm import tqdm
|
27 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
28 |
+
sys.path.append('{}/../..'.format(ROOT_DIR))
|
29 |
+
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
30 |
+
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
31 |
+
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
32 |
+
from cosyvoice.utils.file_utils import logging
|
33 |
+
|
34 |
+
|
35 |
+
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
36 |
+
x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
37 |
+
mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device)
|
38 |
+
mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
39 |
+
t = torch.rand((batch_size), dtype=torch.float32, device=device)
|
40 |
+
spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device)
|
41 |
+
cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
42 |
+
return x, mask, mu, t, spks, cond
|
43 |
+
|
44 |
+
|
45 |
+
def get_args():
|
46 |
+
parser = argparse.ArgumentParser(description='export your model for deployment')
|
47 |
+
parser.add_argument('--model_dir',
|
48 |
+
type=str,
|
49 |
+
default='pretrained_models/CosyVoice-300M',
|
50 |
+
help='local path')
|
51 |
+
args = parser.parse_args()
|
52 |
+
print(args)
|
53 |
+
return args
|
54 |
+
|
55 |
+
|
56 |
+
@torch.no_grad()
|
57 |
+
def main():
|
58 |
+
args = get_args()
|
59 |
+
logging.basicConfig(level=logging.DEBUG,
|
60 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
61 |
+
|
62 |
+
try:
|
63 |
+
model = CosyVoice(args.model_dir)
|
64 |
+
except Exception:
|
65 |
+
try:
|
66 |
+
model = CosyVoice2(args.model_dir)
|
67 |
+
except Exception:
|
68 |
+
raise TypeError('no valid model_type!')
|
69 |
+
|
70 |
+
# 1. export flow decoder estimator
|
71 |
+
estimator = model.model.flow.decoder.estimator
|
72 |
+
estimator.eval()
|
73 |
+
|
74 |
+
device = model.model.device
|
75 |
+
batch_size, seq_len = 2, 256
|
76 |
+
out_channels = model.model.flow.decoder.estimator.out_channels
|
77 |
+
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
78 |
+
torch.onnx.export(
|
79 |
+
estimator,
|
80 |
+
(x, mask, mu, t, spks, cond),
|
81 |
+
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
82 |
+
export_params=True,
|
83 |
+
opset_version=18,
|
84 |
+
do_constant_folding=True,
|
85 |
+
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
86 |
+
output_names=['estimator_out'],
|
87 |
+
dynamic_axes={
|
88 |
+
'x': {2: 'seq_len'},
|
89 |
+
'mask': {2: 'seq_len'},
|
90 |
+
'mu': {2: 'seq_len'},
|
91 |
+
'cond': {2: 'seq_len'},
|
92 |
+
'estimator_out': {2: 'seq_len'},
|
93 |
+
}
|
94 |
+
)
|
95 |
+
|
96 |
+
# 2. test computation consistency
|
97 |
+
option = onnxruntime.SessionOptions()
|
98 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
99 |
+
option.intra_op_num_threads = 1
|
100 |
+
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
101 |
+
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
102 |
+
sess_options=option, providers=providers)
|
103 |
+
|
104 |
+
for _ in tqdm(range(10)):
|
105 |
+
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
106 |
+
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
107 |
+
ort_inputs = {
|
108 |
+
'x': x.cpu().numpy(),
|
109 |
+
'mask': mask.cpu().numpy(),
|
110 |
+
'mu': mu.cpu().numpy(),
|
111 |
+
't': t.cpu().numpy(),
|
112 |
+
'spks': spks.cpu().numpy(),
|
113 |
+
'cond': cond.cpu().numpy()
|
114 |
+
}
|
115 |
+
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
116 |
+
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
117 |
+
logging.info('successfully export estimator')
|
118 |
+
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
main()
|
cosyvoice/bin/inference_deprecated.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
import os
|
21 |
+
import torch
|
22 |
+
from torch.utils.data import DataLoader
|
23 |
+
import torchaudio
|
24 |
+
from hyperpyyaml import load_hyperpyyaml
|
25 |
+
from tqdm import tqdm
|
26 |
+
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
27 |
+
from cosyvoice.dataset.dataset import Dataset
|
28 |
+
|
29 |
+
|
30 |
+
def get_args():
|
31 |
+
parser = argparse.ArgumentParser(description='inference with your model')
|
32 |
+
parser.add_argument('--config', required=True, help='config file')
|
33 |
+
parser.add_argument('--prompt_data', required=True, help='prompt data file')
|
34 |
+
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
|
35 |
+
parser.add_argument('--tts_text', required=True, help='tts input file')
|
36 |
+
parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
|
37 |
+
parser.add_argument('--llm_model', required=True, help='llm model file')
|
38 |
+
parser.add_argument('--flow_model', required=True, help='flow model file')
|
39 |
+
parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
|
40 |
+
parser.add_argument('--gpu',
|
41 |
+
type=int,
|
42 |
+
default=-1,
|
43 |
+
help='gpu id for this rank, -1 for cpu')
|
44 |
+
parser.add_argument('--mode',
|
45 |
+
default='sft',
|
46 |
+
choices=['sft', 'zero_shot'],
|
47 |
+
help='inference mode')
|
48 |
+
parser.add_argument('--result_dir', required=True, help='asr result file')
|
49 |
+
args = parser.parse_args()
|
50 |
+
print(args)
|
51 |
+
return args
|
52 |
+
|
53 |
+
|
54 |
+
def main():
|
55 |
+
args = get_args()
|
56 |
+
logging.basicConfig(level=logging.DEBUG,
|
57 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
58 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
|
59 |
+
|
60 |
+
# Init cosyvoice models from configs
|
61 |
+
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
62 |
+
device = torch.device('cuda' if use_cuda else 'cpu')
|
63 |
+
try:
|
64 |
+
with open(args.config, 'r') as f:
|
65 |
+
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': args.qwen_pretrain_path})
|
66 |
+
model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'])
|
67 |
+
except Exception:
|
68 |
+
try:
|
69 |
+
with open(args.config, 'r') as f:
|
70 |
+
configs = load_hyperpyyaml(f)
|
71 |
+
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
72 |
+
except Exception:
|
73 |
+
raise TypeError('no valid model_type!')
|
74 |
+
|
75 |
+
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
76 |
+
|
77 |
+
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
|
78 |
+
tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
79 |
+
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
80 |
+
|
81 |
+
sample_rate = configs['sample_rate']
|
82 |
+
del configs
|
83 |
+
os.makedirs(args.result_dir, exist_ok=True)
|
84 |
+
fn = os.path.join(args.result_dir, 'wav.scp')
|
85 |
+
f = open(fn, 'w')
|
86 |
+
with torch.no_grad():
|
87 |
+
for _, batch in tqdm(enumerate(test_data_loader)):
|
88 |
+
utts = batch["utts"]
|
89 |
+
assert len(utts) == 1, "inference mode only support batchsize 1"
|
90 |
+
text_token = batch["text_token"].to(device)
|
91 |
+
text_token_len = batch["text_token_len"].to(device)
|
92 |
+
tts_index = batch["tts_index"]
|
93 |
+
tts_text_token = batch["tts_text_token"].to(device)
|
94 |
+
tts_text_token_len = batch["tts_text_token_len"].to(device)
|
95 |
+
speech_token = batch["speech_token"].to(device)
|
96 |
+
speech_token_len = batch["speech_token_len"].to(device)
|
97 |
+
speech_feat = batch["speech_feat"].to(device)
|
98 |
+
speech_feat_len = batch["speech_feat_len"].to(device)
|
99 |
+
utt_embedding = batch["utt_embedding"].to(device)
|
100 |
+
spk_embedding = batch["spk_embedding"].to(device)
|
101 |
+
if args.mode == 'sft':
|
102 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
103 |
+
'llm_embedding': spk_embedding, 'flow_embedding': spk_embedding}
|
104 |
+
else:
|
105 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
106 |
+
'prompt_text': text_token, 'prompt_text_len': text_token_len,
|
107 |
+
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
108 |
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
109 |
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
110 |
+
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
|
111 |
+
tts_speeches = []
|
112 |
+
for model_output in model.tts(**model_input):
|
113 |
+
tts_speeches.append(model_output['tts_speech'])
|
114 |
+
tts_speeches = torch.concat(tts_speeches, dim=1)
|
115 |
+
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
116 |
+
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
117 |
+
torchaudio.save(tts_fn, tts_speeches, sample_rate=sample_rate, backend='soundfile')
|
118 |
+
f.write('{} {}\n'.format(tts_key, tts_fn))
|
119 |
+
f.flush()
|
120 |
+
f.close()
|
121 |
+
logging.info('Result wav.scp saved in {}'.format(fn))
|
122 |
+
|
123 |
+
|
124 |
+
if __name__ == '__main__':
|
125 |
+
logging.warning('this code has been deprecated, please refer to README for CosyVoice inference usage!')
|
126 |
+
main()
|
cosyvoice/bin/train.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
import argparse
|
17 |
+
import datetime
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
from copy import deepcopy
|
21 |
+
import os
|
22 |
+
import torch
|
23 |
+
import torch.distributed as dist
|
24 |
+
import deepspeed
|
25 |
+
|
26 |
+
from hyperpyyaml import load_hyperpyyaml
|
27 |
+
|
28 |
+
from torch.distributed.elastic.multiprocessing.errors import record
|
29 |
+
|
30 |
+
from cosyvoice.utils.losses import DPOLoss
|
31 |
+
from cosyvoice.utils.executor import Executor
|
32 |
+
from cosyvoice.utils.train_utils import (
|
33 |
+
init_distributed,
|
34 |
+
init_dataset_and_dataloader,
|
35 |
+
init_optimizer_and_scheduler,
|
36 |
+
init_summarywriter, save_model,
|
37 |
+
wrap_cuda_model, check_modify_and_save_config)
|
38 |
+
|
39 |
+
|
40 |
+
def get_args():
|
41 |
+
parser = argparse.ArgumentParser(description='training your network')
|
42 |
+
parser.add_argument('--train_engine',
|
43 |
+
default='torch_ddp',
|
44 |
+
choices=['torch_ddp', 'deepspeed'],
|
45 |
+
help='Engine for paralleled training')
|
46 |
+
parser.add_argument('--model', required=True, help='model which will be trained')
|
47 |
+
parser.add_argument('--ref_model', required=False, help='ref model used in dpo')
|
48 |
+
parser.add_argument('--config', required=True, help='config file')
|
49 |
+
parser.add_argument('--train_data', required=True, help='train data file')
|
50 |
+
parser.add_argument('--cv_data', required=True, help='cv data file')
|
51 |
+
parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
|
52 |
+
parser.add_argument('--checkpoint', help='checkpoint model')
|
53 |
+
parser.add_argument('--model_dir', required=True, help='save model dir')
|
54 |
+
parser.add_argument('--tensorboard_dir',
|
55 |
+
default='tensorboard',
|
56 |
+
help='tensorboard log dir')
|
57 |
+
parser.add_argument('--ddp.dist_backend',
|
58 |
+
dest='dist_backend',
|
59 |
+
default='nccl',
|
60 |
+
choices=['nccl', 'gloo'],
|
61 |
+
help='distributed backend')
|
62 |
+
parser.add_argument('--num_workers',
|
63 |
+
default=0,
|
64 |
+
type=int,
|
65 |
+
help='num of subprocess workers for reading')
|
66 |
+
parser.add_argument('--prefetch',
|
67 |
+
default=100,
|
68 |
+
type=int,
|
69 |
+
help='prefetch number')
|
70 |
+
parser.add_argument('--pin_memory',
|
71 |
+
action='store_true',
|
72 |
+
default=False,
|
73 |
+
help='Use pinned memory buffers used for reading')
|
74 |
+
parser.add_argument('--use_amp',
|
75 |
+
action='store_true',
|
76 |
+
default=False,
|
77 |
+
help='Use automatic mixed precision training')
|
78 |
+
parser.add_argument('--dpo',
|
79 |
+
action='store_true',
|
80 |
+
default=False,
|
81 |
+
help='Use Direct Preference Optimization')
|
82 |
+
parser.add_argument('--deepspeed.save_states',
|
83 |
+
dest='save_states',
|
84 |
+
default='model_only',
|
85 |
+
choices=['model_only', 'model+optimizer'],
|
86 |
+
help='save model/optimizer states')
|
87 |
+
parser.add_argument('--timeout',
|
88 |
+
default=60,
|
89 |
+
type=int,
|
90 |
+
help='timeout (in seconds) of cosyvoice_join.')
|
91 |
+
parser = deepspeed.add_config_arguments(parser)
|
92 |
+
args = parser.parse_args()
|
93 |
+
return args
|
94 |
+
|
95 |
+
|
96 |
+
@record
|
97 |
+
def main():
|
98 |
+
args = get_args()
|
99 |
+
logging.basicConfig(level=logging.DEBUG,
|
100 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
101 |
+
# gan train has some special initialization logic
|
102 |
+
gan = True if args.model == 'hifigan' else False
|
103 |
+
|
104 |
+
override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
|
105 |
+
if gan is True:
|
106 |
+
override_dict.pop('hift')
|
107 |
+
try:
|
108 |
+
with open(args.config, 'r') as f:
|
109 |
+
configs = load_hyperpyyaml(f, overrides={**override_dict, 'qwen_pretrain_path': args.qwen_pretrain_path})
|
110 |
+
except Exception:
|
111 |
+
with open(args.config, 'r') as f:
|
112 |
+
configs = load_hyperpyyaml(f, overrides=override_dict)
|
113 |
+
if gan is True:
|
114 |
+
configs['train_conf'] = configs['train_conf_gan']
|
115 |
+
configs['train_conf'].update(vars(args))
|
116 |
+
|
117 |
+
# Init env for ddp
|
118 |
+
init_distributed(args)
|
119 |
+
|
120 |
+
# Get dataset & dataloader
|
121 |
+
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
122 |
+
init_dataset_and_dataloader(args, configs, gan, args.dpo)
|
123 |
+
|
124 |
+
# Do some sanity checks and save config to arsg.model_dir
|
125 |
+
configs = check_modify_and_save_config(args, configs)
|
126 |
+
|
127 |
+
# Tensorboard summary
|
128 |
+
writer = init_summarywriter(args)
|
129 |
+
|
130 |
+
# load checkpoint
|
131 |
+
if args.dpo is True:
|
132 |
+
configs[args.model].forward = configs[args.model].forward_dpo
|
133 |
+
model = configs[args.model]
|
134 |
+
start_step, start_epoch = 0, -1
|
135 |
+
if args.checkpoint is not None:
|
136 |
+
if os.path.exists(args.checkpoint):
|
137 |
+
state_dict = torch.load(args.checkpoint, map_location='cpu')
|
138 |
+
model.load_state_dict(state_dict, strict=False)
|
139 |
+
if 'step' in state_dict:
|
140 |
+
start_step = state_dict['step']
|
141 |
+
if 'epoch' in state_dict:
|
142 |
+
start_epoch = state_dict['epoch']
|
143 |
+
else:
|
144 |
+
logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
|
145 |
+
|
146 |
+
# Dispatch model from cpu to gpu
|
147 |
+
model = wrap_cuda_model(args, model)
|
148 |
+
|
149 |
+
# Get optimizer & scheduler
|
150 |
+
model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
|
151 |
+
scheduler.set_step(start_step)
|
152 |
+
if scheduler_d is not None:
|
153 |
+
scheduler_d.set_step(start_step)
|
154 |
+
|
155 |
+
# Save init checkpoints
|
156 |
+
info_dict = deepcopy(configs['train_conf'])
|
157 |
+
info_dict['step'] = start_step
|
158 |
+
info_dict['epoch'] = start_epoch
|
159 |
+
save_model(model, 'init', info_dict)
|
160 |
+
|
161 |
+
# DPO related
|
162 |
+
if args.dpo is True:
|
163 |
+
ref_model = deepcopy(configs[args.model])
|
164 |
+
state_dict = torch.load(args.ref_model, map_location='cpu')
|
165 |
+
ref_model.load_state_dict(state_dict, strict=False)
|
166 |
+
dpo_loss = DPOLoss(beta=0.01, label_smoothing=0.0, ipo=False)
|
167 |
+
# NOTE maybe it is not needed to wrap ref_model as ddp because its parameter is not updated
|
168 |
+
ref_model = wrap_cuda_model(args, ref_model)
|
169 |
+
else:
|
170 |
+
ref_model, dpo_loss = None, None
|
171 |
+
|
172 |
+
# Get executor
|
173 |
+
executor = Executor(gan=gan, ref_model=ref_model, dpo_loss=dpo_loss)
|
174 |
+
executor.step = start_step
|
175 |
+
|
176 |
+
# Init scaler, used for pytorch amp mixed precision training
|
177 |
+
scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
|
178 |
+
print('start step {} start epoch {}'.format(start_step, start_epoch))
|
179 |
+
|
180 |
+
# Start training loop
|
181 |
+
for epoch in range(start_epoch + 1, info_dict['max_epoch']):
|
182 |
+
executor.epoch = epoch
|
183 |
+
train_dataset.set_epoch(epoch)
|
184 |
+
dist.barrier()
|
185 |
+
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
|
186 |
+
if gan is True:
|
187 |
+
executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
188 |
+
writer, info_dict, scaler, group_join)
|
189 |
+
else:
|
190 |
+
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=ref_model)
|
191 |
+
dist.destroy_process_group(group_join)
|
192 |
+
|
193 |
+
|
194 |
+
if __name__ == '__main__':
|
195 |
+
try:
|
196 |
+
main()
|
197 |
+
except:
|
198 |
+
import os, traceback, sys
|
199 |
+
print("RANK!!!!!!!!!!!!!!!!!!!!!!!!"*4, int(os.environ.get("RANK", 0)))
|
200 |
+
traceback.print_exc()
|
201 |
+
sys.stderr.flush()
|
202 |
+
raise
|
cosyvoice/cli/__init__.py
ADDED
File without changes
|
cosyvoice/cli/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (156 Bytes). View file
|
|
cosyvoice/cli/__pycache__/cosyvoice.cpython-310.pyc
ADDED
Binary file (7.98 kB). View file
|
|
cosyvoice/cli/__pycache__/frontend.cpython-310.pyc
ADDED
Binary file (8.6 kB). View file
|
|
cosyvoice/cli/__pycache__/model.cpython-310.pyc
ADDED
Binary file (12.4 kB). View file
|
|
cosyvoice/cli/cosyvoice.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
import time
|
16 |
+
from typing import Generator
|
17 |
+
from tqdm import tqdm
|
18 |
+
from hyperpyyaml import load_hyperpyyaml
|
19 |
+
from huggingface_hub import snapshot_download
|
20 |
+
import torch
|
21 |
+
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
22 |
+
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
23 |
+
from cosyvoice.utils.file_utils import logging
|
24 |
+
from cosyvoice.utils.class_utils import get_model_type
|
25 |
+
|
26 |
+
|
27 |
+
class CosyVoice:
|
28 |
+
|
29 |
+
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1):
|
30 |
+
self.instruct = True if '-Instruct' in model_dir else False
|
31 |
+
self.model_dir = model_dir
|
32 |
+
self.fp16 = fp16
|
33 |
+
if not os.path.exists(model_dir):
|
34 |
+
model_dir = snapshot_download(model_dir)
|
35 |
+
hyper_yaml_path = '{}/cosyvoice.yaml'.format(model_dir)
|
36 |
+
if not os.path.exists(hyper_yaml_path):
|
37 |
+
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
38 |
+
with open(hyper_yaml_path, 'r') as f:
|
39 |
+
configs = load_hyperpyyaml(f)
|
40 |
+
assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
41 |
+
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
42 |
+
configs['feat_extractor'],
|
43 |
+
'{}/campplus.onnx'.format(model_dir),
|
44 |
+
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
45 |
+
'{}/spk2info.pt'.format(model_dir),
|
46 |
+
configs['allowed_special'])
|
47 |
+
self.sample_rate = configs['sample_rate']
|
48 |
+
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
49 |
+
load_jit, load_trt, fp16 = False, False, False
|
50 |
+
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
51 |
+
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
|
52 |
+
self.model.load('{}/llm.pt'.format(model_dir),
|
53 |
+
'{}/flow.pt'.format(model_dir),
|
54 |
+
'{}/hift.pt'.format(model_dir))
|
55 |
+
if load_jit:
|
56 |
+
self.model.load_jit('{}/llm.text_encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
57 |
+
'{}/llm.llm.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
58 |
+
'{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
59 |
+
if load_trt:
|
60 |
+
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
61 |
+
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
62 |
+
trt_concurrent,
|
63 |
+
self.fp16)
|
64 |
+
del configs
|
65 |
+
|
66 |
+
def list_available_spks(self):
|
67 |
+
spks = list(self.frontend.spk2info.keys())
|
68 |
+
return spks
|
69 |
+
|
70 |
+
def add_zero_shot_spk(self, prompt_text, prompt_speech_16k, zero_shot_spk_id):
|
71 |
+
assert zero_shot_spk_id != '', 'do not use empty zero_shot_spk_id'
|
72 |
+
model_input = self.frontend.frontend_zero_shot('', prompt_text, prompt_speech_16k, self.sample_rate, '')
|
73 |
+
del model_input['text']
|
74 |
+
del model_input['text_len']
|
75 |
+
self.frontend.spk2info[zero_shot_spk_id] = model_input
|
76 |
+
return True
|
77 |
+
|
78 |
+
def save_spkinfo(self):
|
79 |
+
torch.save(self.frontend.spk2info, '{}/spk2info.pt'.format(self.model_dir))
|
80 |
+
|
81 |
+
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
82 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
83 |
+
model_input = self.frontend.frontend_sft(i, spk_id)
|
84 |
+
start_time = time.time()
|
85 |
+
logging.info('synthesis text {}'.format(i))
|
86 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
87 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
88 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
89 |
+
yield model_output
|
90 |
+
start_time = time.time()
|
91 |
+
|
92 |
+
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
|
93 |
+
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
94 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
95 |
+
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
|
96 |
+
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
97 |
+
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
|
98 |
+
start_time = time.time()
|
99 |
+
logging.info('synthesis text {}'.format(i))
|
100 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
101 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
102 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
103 |
+
yield model_output
|
104 |
+
start_time = time.time()
|
105 |
+
|
106 |
+
def inference_cross_lingual(self, tts_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
|
107 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
108 |
+
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
|
109 |
+
start_time = time.time()
|
110 |
+
logging.info('synthesis text {}'.format(i))
|
111 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
112 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
113 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
114 |
+
yield model_output
|
115 |
+
start_time = time.time()
|
116 |
+
|
117 |
+
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
118 |
+
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
|
119 |
+
if self.instruct is False:
|
120 |
+
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
121 |
+
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
|
122 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
123 |
+
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
124 |
+
start_time = time.time()
|
125 |
+
logging.info('synthesis text {}'.format(i))
|
126 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
127 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
128 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
129 |
+
yield model_output
|
130 |
+
start_time = time.time()
|
131 |
+
|
132 |
+
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
133 |
+
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
134 |
+
start_time = time.time()
|
135 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
136 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
137 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
138 |
+
yield model_output
|
139 |
+
start_time = time.time()
|
140 |
+
|
141 |
+
|
142 |
+
class CosyVoice2(CosyVoice):
|
143 |
+
|
144 |
+
def __init__(self, model_dir, load_jit=False, load_trt=False, load_vllm=False, fp16=False, trt_concurrent=1):
|
145 |
+
self.instruct = True if '-Instruct' in model_dir else False
|
146 |
+
self.model_dir = model_dir
|
147 |
+
self.fp16 = fp16
|
148 |
+
if not os.path.exists(model_dir):
|
149 |
+
model_dir = snapshot_download(model_dir)
|
150 |
+
hyper_yaml_path = '{}/cosyvoice2.yaml'.format(model_dir)
|
151 |
+
if not os.path.exists(hyper_yaml_path):
|
152 |
+
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
153 |
+
with open(hyper_yaml_path, 'r') as f:
|
154 |
+
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
155 |
+
assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
|
156 |
+
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
157 |
+
configs['feat_extractor'],
|
158 |
+
'{}/campplus.onnx'.format(model_dir),
|
159 |
+
'{}/speech_tokenizer_v2.onnx'.format(model_dir),
|
160 |
+
'{}/spk2info.pt'.format(model_dir),
|
161 |
+
configs['allowed_special'])
|
162 |
+
self.sample_rate = configs['sample_rate']
|
163 |
+
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
164 |
+
load_jit, load_trt, fp16 = False, False, False
|
165 |
+
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
166 |
+
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
|
167 |
+
self.model.load('{}/llm.pt'.format(model_dir),
|
168 |
+
'{}/flow.pt'.format(model_dir),
|
169 |
+
'{}/hift.pt'.format(model_dir))
|
170 |
+
if load_vllm:
|
171 |
+
self.model.load_vllm('{}/vllm'.format(model_dir))
|
172 |
+
if load_jit:
|
173 |
+
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
174 |
+
if load_trt:
|
175 |
+
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
176 |
+
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
177 |
+
trt_concurrent,
|
178 |
+
self.fp16)
|
179 |
+
del configs
|
180 |
+
|
181 |
+
def inference_instruct(self, *args, **kwargs):
|
182 |
+
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
183 |
+
|
184 |
+
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
|
185 |
+
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
186 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
187 |
+
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
|
188 |
+
start_time = time.time()
|
189 |
+
logging.info('synthesis text {}'.format(i))
|
190 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
191 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
192 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
193 |
+
yield model_output
|
194 |
+
start_time = time.time()
|
cosyvoice/cli/frontend.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from functools import partial
|
15 |
+
from typing import Generator
|
16 |
+
import json
|
17 |
+
import onnxruntime
|
18 |
+
import torch
|
19 |
+
import numpy as np
|
20 |
+
import whisper
|
21 |
+
from typing import Callable
|
22 |
+
import torchaudio.compliance.kaldi as kaldi
|
23 |
+
import torchaudio
|
24 |
+
import os
|
25 |
+
import re
|
26 |
+
import inflect
|
27 |
+
try:
|
28 |
+
import ttsfrd
|
29 |
+
use_ttsfrd = True
|
30 |
+
except ImportError:
|
31 |
+
print("failed to import ttsfrd, use wetext instead")
|
32 |
+
from wetext import Normalizer as ZhNormalizer
|
33 |
+
from wetext import Normalizer as EnNormalizer
|
34 |
+
use_ttsfrd = False
|
35 |
+
from cosyvoice.utils.file_utils import logging
|
36 |
+
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation
|
37 |
+
|
38 |
+
|
39 |
+
class CosyVoiceFrontEnd:
|
40 |
+
|
41 |
+
def __init__(self,
|
42 |
+
get_tokenizer: Callable,
|
43 |
+
feat_extractor: Callable,
|
44 |
+
campplus_model: str,
|
45 |
+
speech_tokenizer_model: str,
|
46 |
+
spk2info: str = '',
|
47 |
+
allowed_special: str = 'all'):
|
48 |
+
self.tokenizer = get_tokenizer()
|
49 |
+
self.feat_extractor = feat_extractor
|
50 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
51 |
+
option = onnxruntime.SessionOptions()
|
52 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
53 |
+
option.intra_op_num_threads = 1
|
54 |
+
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
55 |
+
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option,
|
56 |
+
providers=["CUDAExecutionProvider" if torch.cuda.is_available() else
|
57 |
+
"CPUExecutionProvider"])
|
58 |
+
if os.path.exists(spk2info):
|
59 |
+
self.spk2info = torch.load(spk2info, map_location=self.device)
|
60 |
+
else:
|
61 |
+
self.spk2info = {}
|
62 |
+
self.allowed_special = allowed_special
|
63 |
+
self.use_ttsfrd = use_ttsfrd
|
64 |
+
if self.use_ttsfrd:
|
65 |
+
self.frd = ttsfrd.TtsFrontendEngine()
|
66 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
67 |
+
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \
|
68 |
+
'failed to initialize ttsfrd resource'
|
69 |
+
self.frd.set_lang_type('pinyinvg')
|
70 |
+
else:
|
71 |
+
self.zh_tn_model = ZhNormalizer(remove_erhua=False)
|
72 |
+
self.en_tn_model = EnNormalizer()
|
73 |
+
self.inflect_parser = inflect.engine()
|
74 |
+
|
75 |
+
def _extract_text_token(self, text):
|
76 |
+
if isinstance(text, Generator):
|
77 |
+
logging.info('get tts_text generator, will return _extract_text_token_generator!')
|
78 |
+
# NOTE add a dummy text_token_len for compatibility
|
79 |
+
return self._extract_text_token_generator(text), torch.tensor([0], dtype=torch.int32).to(self.device)
|
80 |
+
else:
|
81 |
+
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
82 |
+
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
|
83 |
+
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
|
84 |
+
return text_token, text_token_len
|
85 |
+
|
86 |
+
def _extract_text_token_generator(self, text_generator):
|
87 |
+
for text in text_generator:
|
88 |
+
text_token, _ = self._extract_text_token(text)
|
89 |
+
for i in range(text_token.shape[1]):
|
90 |
+
yield text_token[:, i: i + 1]
|
91 |
+
|
92 |
+
def _extract_speech_token(self, speech):
|
93 |
+
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
|
94 |
+
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
95 |
+
speech_token = self.speech_tokenizer_session.run(None,
|
96 |
+
{self.speech_tokenizer_session.get_inputs()[0].name:
|
97 |
+
feat.detach().cpu().numpy(),
|
98 |
+
self.speech_tokenizer_session.get_inputs()[1].name:
|
99 |
+
np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
100 |
+
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
|
101 |
+
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
102 |
+
return speech_token, speech_token_len
|
103 |
+
|
104 |
+
def _extract_spk_embedding(self, speech):
|
105 |
+
feat = kaldi.fbank(speech,
|
106 |
+
num_mel_bins=80,
|
107 |
+
dither=0,
|
108 |
+
sample_frequency=16000)
|
109 |
+
feat = feat - feat.mean(dim=0, keepdim=True)
|
110 |
+
embedding = self.campplus_session.run(None,
|
111 |
+
{self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
112 |
+
embedding = torch.tensor([embedding]).to(self.device)
|
113 |
+
return embedding
|
114 |
+
|
115 |
+
def _extract_speech_feat(self, speech):
|
116 |
+
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
|
117 |
+
speech_feat = speech_feat.unsqueeze(dim=0)
|
118 |
+
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
119 |
+
return speech_feat, speech_feat_len
|
120 |
+
|
121 |
+
def text_normalize(self, text, split=True, text_frontend=True):
|
122 |
+
if isinstance(text, Generator):
|
123 |
+
logging.info('get tts_text generator, will skip text_normalize!')
|
124 |
+
return [text]
|
125 |
+
if text_frontend is False or text == '':
|
126 |
+
return [text] if split is True else text
|
127 |
+
text = text.strip()
|
128 |
+
if self.use_ttsfrd:
|
129 |
+
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
130 |
+
text = ''.join(texts)
|
131 |
+
else:
|
132 |
+
if contains_chinese(text):
|
133 |
+
text = self.zh_tn_model.normalize(text)
|
134 |
+
text = text.replace("\n", "")
|
135 |
+
text = replace_blank(text)
|
136 |
+
text = replace_corner_mark(text)
|
137 |
+
text = text.replace(".", "。")
|
138 |
+
text = text.replace(" - ", ",")
|
139 |
+
text = remove_bracket(text)
|
140 |
+
text = re.sub(r'[,,、]+$', '。', text)
|
141 |
+
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
142 |
+
token_min_n=60, merge_len=20, comma_split=False))
|
143 |
+
else:
|
144 |
+
text = self.en_tn_model.normalize(text)
|
145 |
+
text = spell_out_number(text, self.inflect_parser)
|
146 |
+
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
147 |
+
token_min_n=60, merge_len=20, comma_split=False))
|
148 |
+
texts = [i for i in texts if not is_only_punctuation(i)]
|
149 |
+
return texts if split is True else text
|
150 |
+
|
151 |
+
def frontend_sft(self, tts_text, spk_id):
|
152 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
153 |
+
embedding = self.spk2info[spk_id]['embedding']
|
154 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
155 |
+
return model_input
|
156 |
+
|
157 |
+
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
|
158 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
159 |
+
if zero_shot_spk_id == '':
|
160 |
+
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
161 |
+
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
162 |
+
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
163 |
+
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
164 |
+
if resample_rate == 24000:
|
165 |
+
# cosyvoice2, force speech_feat % speech_token = 2
|
166 |
+
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
167 |
+
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
168 |
+
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
169 |
+
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
170 |
+
model_input = {'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
171 |
+
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
172 |
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
173 |
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
174 |
+
'llm_embedding': embedding, 'flow_embedding': embedding}
|
175 |
+
else:
|
176 |
+
model_input = self.spk2info[zero_shot_spk_id]
|
177 |
+
model_input['text'] = tts_text_token
|
178 |
+
model_input['text_len'] = tts_text_token_len
|
179 |
+
return model_input
|
180 |
+
|
181 |
+
def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
|
182 |
+
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate, zero_shot_spk_id)
|
183 |
+
# in cross lingual mode, we remove prompt in llm
|
184 |
+
del model_input['prompt_text']
|
185 |
+
del model_input['prompt_text_len']
|
186 |
+
del model_input['llm_prompt_speech_token']
|
187 |
+
del model_input['llm_prompt_speech_token_len']
|
188 |
+
return model_input
|
189 |
+
|
190 |
+
def frontend_instruct(self, tts_text, spk_id, instruct_text):
|
191 |
+
model_input = self.frontend_sft(tts_text, spk_id)
|
192 |
+
# in instruct mode, we remove spk_embedding in llm due to information leakage
|
193 |
+
del model_input['llm_embedding']
|
194 |
+
instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '<endofprompt>')
|
195 |
+
model_input['prompt_text'] = instruct_text_token
|
196 |
+
model_input['prompt_text_len'] = instruct_text_token_len
|
197 |
+
return model_input
|
198 |
+
|
199 |
+
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
|
200 |
+
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate, zero_shot_spk_id)
|
201 |
+
del model_input['llm_prompt_speech_token']
|
202 |
+
del model_input['llm_prompt_speech_token_len']
|
203 |
+
return model_input
|
204 |
+
|
205 |
+
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
|
206 |
+
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
207 |
+
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
208 |
+
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
209 |
+
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
210 |
+
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
|
211 |
+
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
|
212 |
+
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
|
213 |
+
'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
|
214 |
+
'flow_embedding': embedding}
|
215 |
+
return model_input
|
cosyvoice/cli/model.py
ADDED
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import os
|
16 |
+
from typing import Generator
|
17 |
+
import torch
|
18 |
+
import numpy as np
|
19 |
+
import threading
|
20 |
+
import time
|
21 |
+
from torch.nn import functional as F
|
22 |
+
from contextlib import nullcontext
|
23 |
+
import uuid
|
24 |
+
from cosyvoice.utils.common import fade_in_out
|
25 |
+
from cosyvoice.utils.file_utils import convert_onnx_to_trt, export_cosyvoice2_vllm
|
26 |
+
from cosyvoice.utils.common import TrtContextWrapper
|
27 |
+
|
28 |
+
|
29 |
+
class CosyVoiceModel:
|
30 |
+
|
31 |
+
def __init__(self,
|
32 |
+
llm: torch.nn.Module,
|
33 |
+
flow: torch.nn.Module,
|
34 |
+
hift: torch.nn.Module,
|
35 |
+
fp16: bool = False):
|
36 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
37 |
+
self.llm = llm
|
38 |
+
self.flow = flow
|
39 |
+
self.hift = hift
|
40 |
+
self.fp16 = fp16
|
41 |
+
if self.fp16 is True:
|
42 |
+
self.llm.half()
|
43 |
+
self.flow.half()
|
44 |
+
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
45 |
+
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
46 |
+
self.token_overlap_len = 20
|
47 |
+
# mel fade in out
|
48 |
+
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
49 |
+
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
50 |
+
# hift cache
|
51 |
+
self.mel_cache_len = 20
|
52 |
+
self.source_cache_len = int(self.mel_cache_len * 256)
|
53 |
+
# speech fade in out
|
54 |
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
55 |
+
# rtf and decoding related
|
56 |
+
self.stream_scale_factor = 1
|
57 |
+
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
58 |
+
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
59 |
+
self.lock = threading.Lock()
|
60 |
+
# dict used to store session related variable
|
61 |
+
self.tts_speech_token_dict = {}
|
62 |
+
self.llm_end_dict = {}
|
63 |
+
self.mel_overlap_dict = {}
|
64 |
+
self.flow_cache_dict = {}
|
65 |
+
self.hift_cache_dict = {}
|
66 |
+
|
67 |
+
def load(self, llm_model, flow_model, hift_model):
|
68 |
+
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=False)
|
69 |
+
self.llm.to(self.device).eval()
|
70 |
+
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=False)
|
71 |
+
self.flow.to(self.device).eval()
|
72 |
+
# in case hift_model is a hifigan model
|
73 |
+
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
|
74 |
+
self.hift.load_state_dict(hift_state_dict, strict=False)
|
75 |
+
self.hift.to(self.device).eval()
|
76 |
+
|
77 |
+
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
|
78 |
+
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
|
79 |
+
self.llm.text_encoder = llm_text_encoder
|
80 |
+
llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
|
81 |
+
self.llm.llm = llm_llm
|
82 |
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
83 |
+
self.flow.encoder = flow_encoder
|
84 |
+
|
85 |
+
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent, fp16):
|
86 |
+
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
87 |
+
if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
|
88 |
+
convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16)
|
89 |
+
del self.flow.decoder.estimator
|
90 |
+
import tensorrt as trt
|
91 |
+
with open(flow_decoder_estimator_model, 'rb') as f:
|
92 |
+
estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
93 |
+
assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
|
94 |
+
self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
|
95 |
+
|
96 |
+
def get_trt_kwargs(self):
|
97 |
+
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)]
|
98 |
+
opt_shape = [(2, 80, 500), (2, 1, 500), (2, 80, 500), (2, 80, 500)]
|
99 |
+
max_shape = [(2, 80, 3000), (2, 1, 3000), (2, 80, 3000), (2, 80, 3000)]
|
100 |
+
input_names = ["x", "mask", "mu", "cond"]
|
101 |
+
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
102 |
+
|
103 |
+
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
104 |
+
with self.llm_context, torch.cuda.amp.autocast(self.fp16 is True and hasattr(self.llm, 'vllm') is False):
|
105 |
+
if isinstance(text, Generator):
|
106 |
+
assert isinstance(self, CosyVoice2Model) and not hasattr(self.llm, 'vllm'), 'streaming input text is only implemented for CosyVoice2 and do not support vllm!'
|
107 |
+
for i in self.llm.inference_bistream(text=text,
|
108 |
+
prompt_text=prompt_text.to(self.device),
|
109 |
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
110 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
111 |
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
112 |
+
embedding=llm_embedding.to(self.device)):
|
113 |
+
self.tts_speech_token_dict[uuid].append(i)
|
114 |
+
else:
|
115 |
+
for i in self.llm.inference(text=text.to(self.device),
|
116 |
+
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
117 |
+
prompt_text=prompt_text.to(self.device),
|
118 |
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
119 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
120 |
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
121 |
+
embedding=llm_embedding.to(self.device),
|
122 |
+
uuid=uuid):
|
123 |
+
self.tts_speech_token_dict[uuid].append(i)
|
124 |
+
self.llm_end_dict[uuid] = True
|
125 |
+
|
126 |
+
def vc_job(self, source_speech_token, uuid):
|
127 |
+
self.tts_speech_token_dict[uuid] = source_speech_token.flatten().tolist()
|
128 |
+
self.llm_end_dict[uuid] = True
|
129 |
+
|
130 |
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
131 |
+
with torch.cuda.amp.autocast(self.fp16):
|
132 |
+
tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
|
133 |
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
134 |
+
prompt_token=prompt_token.to(self.device),
|
135 |
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
136 |
+
prompt_feat=prompt_feat.to(self.device),
|
137 |
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
138 |
+
embedding=embedding.to(self.device),
|
139 |
+
flow_cache=self.flow_cache_dict[uuid])
|
140 |
+
|
141 |
+
# mel overlap fade in out
|
142 |
+
if self.mel_overlap_dict[uuid].shape[2] != 0:
|
143 |
+
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
144 |
+
# append hift cache
|
145 |
+
if self.hift_cache_dict[uuid] is not None:
|
146 |
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
147 |
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
148 |
+
else:
|
149 |
+
hift_cache_source = torch.zeros(1, 1, 0)
|
150 |
+
# keep overlap mel and hift cache
|
151 |
+
if finalize is False:
|
152 |
+
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
153 |
+
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
154 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
155 |
+
if self.hift_cache_dict[uuid] is not None:
|
156 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
157 |
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
158 |
+
'source': tts_source[:, :, -self.source_cache_len:],
|
159 |
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
160 |
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
161 |
+
else:
|
162 |
+
if speed != 1.0:
|
163 |
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
164 |
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
165 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
166 |
+
if self.hift_cache_dict[uuid] is not None:
|
167 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
168 |
+
return tts_speech
|
169 |
+
|
170 |
+
def tts(self, text=torch.zeros(1, 0, dtype=torch.int32), flow_embedding=torch.zeros(0, 192), llm_embedding=torch.zeros(0, 192),
|
171 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
172 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
173 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
174 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), source_speech_token=torch.zeros(1, 0, dtype=torch.int32), stream=False, speed=1.0, **kwargs):
|
175 |
+
# this_uuid is used to track variables related to this inference thread
|
176 |
+
this_uuid = str(uuid.uuid1())
|
177 |
+
with self.lock:
|
178 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
179 |
+
self.hift_cache_dict[this_uuid] = None
|
180 |
+
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
181 |
+
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
182 |
+
if source_speech_token.shape[1] == 0:
|
183 |
+
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
184 |
+
else:
|
185 |
+
p = threading.Thread(target=self.vc_job, args=(source_speech_token, this_uuid))
|
186 |
+
p.start()
|
187 |
+
if stream is True:
|
188 |
+
token_hop_len = self.token_min_hop_len
|
189 |
+
while True:
|
190 |
+
time.sleep(0.1)
|
191 |
+
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
192 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
193 |
+
.unsqueeze(dim=0)
|
194 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
195 |
+
prompt_token=flow_prompt_speech_token,
|
196 |
+
prompt_feat=prompt_speech_feat,
|
197 |
+
embedding=flow_embedding,
|
198 |
+
uuid=this_uuid,
|
199 |
+
finalize=False)
|
200 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
201 |
+
with self.lock:
|
202 |
+
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
203 |
+
# increase token_hop_len for better speech quality
|
204 |
+
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
205 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
206 |
+
break
|
207 |
+
p.join()
|
208 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
209 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
210 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
211 |
+
prompt_token=flow_prompt_speech_token,
|
212 |
+
prompt_feat=prompt_speech_feat,
|
213 |
+
embedding=flow_embedding,
|
214 |
+
uuid=this_uuid,
|
215 |
+
finalize=True)
|
216 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
217 |
+
else:
|
218 |
+
# deal with all tokens
|
219 |
+
p.join()
|
220 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
221 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
222 |
+
prompt_token=flow_prompt_speech_token,
|
223 |
+
prompt_feat=prompt_speech_feat,
|
224 |
+
embedding=flow_embedding,
|
225 |
+
uuid=this_uuid,
|
226 |
+
finalize=True,
|
227 |
+
speed=speed)
|
228 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
229 |
+
with self.lock:
|
230 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
231 |
+
self.llm_end_dict.pop(this_uuid)
|
232 |
+
self.mel_overlap_dict.pop(this_uuid)
|
233 |
+
self.hift_cache_dict.pop(this_uuid)
|
234 |
+
self.flow_cache_dict.pop(this_uuid)
|
235 |
+
if torch.cuda.is_available():
|
236 |
+
torch.cuda.empty_cache()
|
237 |
+
torch.cuda.current_stream().synchronize()
|
238 |
+
|
239 |
+
|
240 |
+
class CosyVoice2Model(CosyVoiceModel):
|
241 |
+
|
242 |
+
def __init__(self,
|
243 |
+
llm: torch.nn.Module,
|
244 |
+
flow: torch.nn.Module,
|
245 |
+
hift: torch.nn.Module,
|
246 |
+
fp16: bool = False):
|
247 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
248 |
+
self.llm = llm
|
249 |
+
self.flow = flow
|
250 |
+
self.hift = hift
|
251 |
+
self.fp16 = fp16
|
252 |
+
if self.fp16 is True:
|
253 |
+
self.llm.half()
|
254 |
+
self.flow.half()
|
255 |
+
# NOTE must matching training static_chunk_size
|
256 |
+
self.token_hop_len = 25
|
257 |
+
# hift cache
|
258 |
+
self.mel_cache_len = 8
|
259 |
+
self.source_cache_len = int(self.mel_cache_len * 480)
|
260 |
+
# speech fade in out
|
261 |
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
262 |
+
# rtf and decoding related
|
263 |
+
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
264 |
+
self.lock = threading.Lock()
|
265 |
+
# dict used to store session related variable
|
266 |
+
self.tts_speech_token_dict = {}
|
267 |
+
self.llm_end_dict = {}
|
268 |
+
self.hift_cache_dict = {}
|
269 |
+
|
270 |
+
def load_jit(self, flow_encoder_model):
|
271 |
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
272 |
+
self.flow.encoder = flow_encoder
|
273 |
+
|
274 |
+
def load_vllm(self, model_dir):
|
275 |
+
export_cosyvoice2_vllm(self.llm, model_dir, self.device)
|
276 |
+
from vllm import EngineArgs, LLMEngine
|
277 |
+
engine_args = EngineArgs(model=model_dir,
|
278 |
+
skip_tokenizer_init=True,
|
279 |
+
enable_prompt_embeds=True,
|
280 |
+
gpu_memory_utilization=0.2)
|
281 |
+
self.llm.vllm = LLMEngine.from_engine_args(engine_args)
|
282 |
+
self.llm.lock = threading.Lock()
|
283 |
+
del self.llm.llm.model.model.layers
|
284 |
+
|
285 |
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
|
286 |
+
with torch.cuda.amp.autocast(self.fp16):
|
287 |
+
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
288 |
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
289 |
+
prompt_token=prompt_token.to(self.device),
|
290 |
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
291 |
+
prompt_feat=prompt_feat.to(self.device),
|
292 |
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
293 |
+
embedding=embedding.to(self.device),
|
294 |
+
streaming=stream,
|
295 |
+
finalize=finalize)
|
296 |
+
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
297 |
+
# append hift cache
|
298 |
+
if self.hift_cache_dict[uuid] is not None:
|
299 |
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
300 |
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
301 |
+
else:
|
302 |
+
hift_cache_source = torch.zeros(1, 1, 0)
|
303 |
+
# keep overlap mel and hift cache
|
304 |
+
if finalize is False:
|
305 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
306 |
+
if self.hift_cache_dict[uuid] is not None:
|
307 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
308 |
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
309 |
+
'source': tts_source[:, :, -self.source_cache_len:],
|
310 |
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
311 |
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
312 |
+
else:
|
313 |
+
if speed != 1.0:
|
314 |
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
315 |
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
316 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
317 |
+
if self.hift_cache_dict[uuid] is not None:
|
318 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
319 |
+
return tts_speech
|
320 |
+
|
321 |
+
def tts(self, text=torch.zeros(1, 0, dtype=torch.int32), flow_embedding=torch.zeros(0, 192), llm_embedding=torch.zeros(0, 192),
|
322 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
323 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
324 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
325 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), source_speech_token=torch.zeros(1, 0, dtype=torch.int32), stream=False, speed=1.0, **kwargs):
|
326 |
+
# this_uuid is used to track variables related to this inference thread
|
327 |
+
this_uuid = str(uuid.uuid1())
|
328 |
+
with self.lock:
|
329 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
330 |
+
self.hift_cache_dict[this_uuid] = None
|
331 |
+
if source_speech_token.shape[1] == 0:
|
332 |
+
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
333 |
+
else:
|
334 |
+
p = threading.Thread(target=self.vc_job, args=(source_speech_token, this_uuid))
|
335 |
+
p.start()
|
336 |
+
if stream is True:
|
337 |
+
token_offset = 0
|
338 |
+
prompt_token_pad = int(np.ceil(flow_prompt_speech_token.shape[1] / self.token_hop_len) * self.token_hop_len - flow_prompt_speech_token.shape[1])
|
339 |
+
while True:
|
340 |
+
time.sleep(0.1)
|
341 |
+
this_token_hop_len = self.token_hop_len + prompt_token_pad if token_offset == 0 else self.token_hop_len
|
342 |
+
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= this_token_hop_len + self.flow.pre_lookahead_len:
|
343 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + this_token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
344 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
345 |
+
prompt_token=flow_prompt_speech_token,
|
346 |
+
prompt_feat=prompt_speech_feat,
|
347 |
+
embedding=flow_embedding,
|
348 |
+
token_offset=token_offset,
|
349 |
+
uuid=this_uuid,
|
350 |
+
stream=stream,
|
351 |
+
finalize=False)
|
352 |
+
token_offset += this_token_hop_len
|
353 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
354 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < this_token_hop_len + self.flow.pre_lookahead_len:
|
355 |
+
break
|
356 |
+
p.join()
|
357 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
358 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
359 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
360 |
+
prompt_token=flow_prompt_speech_token,
|
361 |
+
prompt_feat=prompt_speech_feat,
|
362 |
+
embedding=flow_embedding,
|
363 |
+
token_offset=token_offset,
|
364 |
+
uuid=this_uuid,
|
365 |
+
finalize=True)
|
366 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
367 |
+
else:
|
368 |
+
# deal with all tokens
|
369 |
+
p.join()
|
370 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
371 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
372 |
+
prompt_token=flow_prompt_speech_token,
|
373 |
+
prompt_feat=prompt_speech_feat,
|
374 |
+
embedding=flow_embedding,
|
375 |
+
token_offset=0,
|
376 |
+
uuid=this_uuid,
|
377 |
+
finalize=True,
|
378 |
+
speed=speed)
|
379 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
380 |
+
with self.lock:
|
381 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
382 |
+
self.llm_end_dict.pop(this_uuid)
|
383 |
+
self.hift_cache_dict.pop(this_uuid)
|
384 |
+
if torch.cuda.is_available():
|
385 |
+
torch.cuda.empty_cache()
|
386 |
+
torch.cuda.current_stream().synchronize()
|
cosyvoice/dataset/__init__.py
ADDED
File without changes
|
cosyvoice/dataset/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (160 Bytes). View file
|
|
cosyvoice/dataset/__pycache__/custom_processor.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
cosyvoice/dataset/__pycache__/dataset.cpython-310.pyc
ADDED
Binary file (4.44 kB). View file
|
|
cosyvoice/dataset/__pycache__/processor.cpython-310.pyc
ADDED
Binary file (12.7 kB). View file
|
|
cosyvoice/dataset/custom_processor.py
ADDED
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
import random
|
16 |
+
|
17 |
+
import pyarrow.parquet as pq
|
18 |
+
from io import BytesIO
|
19 |
+
import torch
|
20 |
+
import torchaudio
|
21 |
+
from torch.nn.utils.rnn import pad_sequence
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import pyworld as pw
|
24 |
+
|
25 |
+
|
26 |
+
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
|
27 |
+
|
28 |
+
import json
|
29 |
+
from typing import Iterable, Dict, Any
|
30 |
+
|
31 |
+
def json_line_opener(data: Iterable[Dict[str, Any]], mode='train'):
|
32 |
+
"""
|
33 |
+
data: Iterable[dict] 来自 DataList,里面只有 {'src': 'xxx.txt'}
|
34 |
+
逐行读取 json,yield 出 {'key', 'text', 'text_token', 'speech_token'}
|
35 |
+
"""
|
36 |
+
for sample in data:
|
37 |
+
txt_path = sample['src']
|
38 |
+
with open(txt_path, 'r', encoding='utf-8') as f:
|
39 |
+
for line in f:
|
40 |
+
if not line.strip():
|
41 |
+
continue
|
42 |
+
js = json.loads(line)
|
43 |
+
yield {
|
44 |
+
'key': js['key'],
|
45 |
+
'text': js['txt'],
|
46 |
+
'text_token': js['txt'], # 先保留原文本,tokenize 阶段再转 id
|
47 |
+
'speech_token': js['code'], # 已经是 list[int]
|
48 |
+
}
|
49 |
+
|
50 |
+
# def parquet_opener(data, mode='train', tts_data={}):
|
51 |
+
# """ Give url or local file, return file descriptor
|
52 |
+
# Inplace operation.
|
53 |
+
|
54 |
+
# Args:
|
55 |
+
# data(Iterable[str]): url or local file list
|
56 |
+
|
57 |
+
# Returns:
|
58 |
+
# Iterable[{src, stream}]
|
59 |
+
# """
|
60 |
+
# for sample in data:
|
61 |
+
# assert 'src' in sample
|
62 |
+
# url = sample['src']
|
63 |
+
# try:
|
64 |
+
# for df in pq.ParquetFile(url).iter_batches(batch_size=64):
|
65 |
+
# df = df.to_pandas()
|
66 |
+
# for i in range(len(df)):
|
67 |
+
# sample.update(dict(df.loc[i]))
|
68 |
+
# if mode == 'train':
|
69 |
+
# # NOTE do not return sample directly, must initialize a new dict
|
70 |
+
# yield {**sample}
|
71 |
+
# else:
|
72 |
+
# for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
73 |
+
# yield {**sample, 'tts_index': index, 'tts_text': text}
|
74 |
+
# except Exception as ex:
|
75 |
+
# logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
76 |
+
|
77 |
+
|
78 |
+
def filter(data,
|
79 |
+
max_length=10240,
|
80 |
+
min_length=10,
|
81 |
+
token_max_length=200,
|
82 |
+
token_min_length=1,
|
83 |
+
min_output_input_ratio=0.0005,
|
84 |
+
max_output_input_ratio=1,
|
85 |
+
mode='train'):
|
86 |
+
""" Filter sample according to feature and label length
|
87 |
+
Inplace operation.
|
88 |
+
|
89 |
+
Args::
|
90 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
91 |
+
max_length: drop utterance which is greater than max_length(10ms)
|
92 |
+
min_length: drop utterance which is less than min_length(10ms)
|
93 |
+
token_max_length: drop utterance which is greater than
|
94 |
+
token_max_length, especially when use char unit for
|
95 |
+
english modeling
|
96 |
+
token_min_length: drop utterance which is
|
97 |
+
less than token_max_length
|
98 |
+
min_output_input_ratio: minimal ration of
|
99 |
+
token_length / feats_length(10ms)
|
100 |
+
max_output_input_ratio: maximum ration of
|
101 |
+
token_length / feats_length(10ms)
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
Iterable[{key, wav, label, sample_rate}]
|
105 |
+
"""
|
106 |
+
for sample in data:
|
107 |
+
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
108 |
+
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
109 |
+
del sample['audio_data']
|
110 |
+
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
111 |
+
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
112 |
+
if num_frames < min_length:
|
113 |
+
continue
|
114 |
+
if num_frames > max_length:
|
115 |
+
continue
|
116 |
+
if len(sample['text_token']) < token_min_length:
|
117 |
+
continue
|
118 |
+
if len(sample['text_token']) > token_max_length:
|
119 |
+
continue
|
120 |
+
if len(sample['speech_token']) == 0:
|
121 |
+
continue
|
122 |
+
if 'reject_speech_token' in sample and len(sample['reject_speech_token']) == 0:
|
123 |
+
continue
|
124 |
+
if num_frames != 0:
|
125 |
+
if len(sample['text_token']) / num_frames < min_output_input_ratio:
|
126 |
+
continue
|
127 |
+
if len(sample['text_token']) / num_frames > max_output_input_ratio:
|
128 |
+
continue
|
129 |
+
yield sample
|
130 |
+
|
131 |
+
|
132 |
+
def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
|
133 |
+
""" Resample data.
|
134 |
+
Inplace operation.
|
135 |
+
|
136 |
+
Args:
|
137 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
138 |
+
resample_rate: target resample rate
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
Iterable[{key, wav, label, sample_rate}]
|
142 |
+
"""
|
143 |
+
for sample in data:
|
144 |
+
assert 'sample_rate' in sample
|
145 |
+
assert 'speech' in sample
|
146 |
+
sample_rate = sample['sample_rate']
|
147 |
+
waveform = sample['speech']
|
148 |
+
if sample_rate != resample_rate:
|
149 |
+
if sample_rate < min_sample_rate:
|
150 |
+
continue
|
151 |
+
sample['sample_rate'] = resample_rate
|
152 |
+
sample['speech'] = torchaudio.transforms.Resample(
|
153 |
+
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
|
154 |
+
max_val = sample['speech'].abs().max()
|
155 |
+
if max_val > 1:
|
156 |
+
sample['speech'] /= max_val
|
157 |
+
yield sample
|
158 |
+
|
159 |
+
|
160 |
+
def truncate(data, truncate_length=24576, mode='train'):
|
161 |
+
""" Truncate data.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
165 |
+
truncate_length: truncate length
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
Iterable[{key, wav, label, sample_rate}]
|
169 |
+
"""
|
170 |
+
for sample in data:
|
171 |
+
waveform = sample['speech']
|
172 |
+
if waveform.shape[1] > truncate_length:
|
173 |
+
start = random.randint(0, waveform.shape[1] - truncate_length)
|
174 |
+
waveform = waveform[:, start: start + truncate_length]
|
175 |
+
else:
|
176 |
+
waveform = torch.concat([waveform, torch.zeros(1, truncate_length - waveform.shape[1])], dim=1)
|
177 |
+
sample['speech'] = waveform
|
178 |
+
yield sample
|
179 |
+
|
180 |
+
|
181 |
+
def compute_fbank(data,
|
182 |
+
feat_extractor,
|
183 |
+
token_mel_ratio=0,
|
184 |
+
mode='train'):
|
185 |
+
""" Extract fbank
|
186 |
+
|
187 |
+
Args:
|
188 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
Iterable[{key, feat, label}]
|
192 |
+
"""
|
193 |
+
for sample in data:
|
194 |
+
assert 'sample_rate' in sample
|
195 |
+
assert 'speech' in sample
|
196 |
+
assert 'utt' in sample
|
197 |
+
assert 'text_token' in sample
|
198 |
+
waveform = sample['speech']
|
199 |
+
feat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
200 |
+
if token_mel_ratio != 0:
|
201 |
+
# trim to align speech_token and speech_feat
|
202 |
+
token_len = int(min(feat.shape[0] / token_mel_ratio, sample["speech_token"].shape[0]))
|
203 |
+
feat = feat[:token_mel_ratio * token_len]
|
204 |
+
sample["speech_token"] = sample["speech_token"][:token_len]
|
205 |
+
sample['speech_feat'] = feat
|
206 |
+
yield sample
|
207 |
+
|
208 |
+
|
209 |
+
def compute_f0(data, sample_rate, hop_size, mode='train'):
|
210 |
+
""" Extract f0
|
211 |
+
|
212 |
+
Args:
|
213 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
214 |
+
|
215 |
+
Returns:
|
216 |
+
Iterable[{key, feat, label}]
|
217 |
+
"""
|
218 |
+
frame_period = hop_size * 1000 / sample_rate
|
219 |
+
for sample in data:
|
220 |
+
assert 'sample_rate' in sample
|
221 |
+
assert 'speech' in sample
|
222 |
+
assert 'utt' in sample
|
223 |
+
assert 'text_token' in sample
|
224 |
+
waveform = sample['speech']
|
225 |
+
_f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
|
226 |
+
if sum(_f0 != 0) < 5: # this happens when the algorithm fails
|
227 |
+
_f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
|
228 |
+
f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
|
229 |
+
f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
|
230 |
+
sample['pitch_feat'] = f0
|
231 |
+
yield sample
|
232 |
+
|
233 |
+
|
234 |
+
def parse_embedding(data, normalize, mode='train'):
|
235 |
+
""" Parse utt_embedding/spk_embedding
|
236 |
+
|
237 |
+
Args:
|
238 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
Iterable[{key, feat, label}]
|
242 |
+
"""
|
243 |
+
for sample in data:
|
244 |
+
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
245 |
+
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
|
246 |
+
if normalize:
|
247 |
+
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
248 |
+
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
249 |
+
yield sample
|
250 |
+
|
251 |
+
|
252 |
+
def tokenize(data, get_tokenizer, allowed_special, mode='train'):
|
253 |
+
""" Decode text to chars or BPE
|
254 |
+
Inplace operation
|
255 |
+
|
256 |
+
Args:
|
257 |
+
data: Iterable[{key, wav, txt, sample_rate}]
|
258 |
+
|
259 |
+
Returns:
|
260 |
+
Iterable[{key, wav, txt, tokens, label, sample_rate}]
|
261 |
+
"""
|
262 |
+
tokenizer = get_tokenizer()
|
263 |
+
for sample in data:
|
264 |
+
assert 'text' in sample
|
265 |
+
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
266 |
+
yield sample
|
267 |
+
|
268 |
+
|
269 |
+
def shuffle(data, shuffle_size=10000, mode='train'):
|
270 |
+
""" Local shuffle the data
|
271 |
+
|
272 |
+
Args:
|
273 |
+
data: Iterable[{key, feat, label}]
|
274 |
+
shuffle_size: buffer size for shuffle
|
275 |
+
|
276 |
+
Returns:
|
277 |
+
Iterable[{key, feat, label}]
|
278 |
+
"""
|
279 |
+
buf = []
|
280 |
+
for sample in data:
|
281 |
+
buf.append(sample)
|
282 |
+
if len(buf) >= shuffle_size:
|
283 |
+
random.shuffle(buf)
|
284 |
+
for x in buf:
|
285 |
+
yield x
|
286 |
+
buf = []
|
287 |
+
# The sample left over
|
288 |
+
random.shuffle(buf)
|
289 |
+
for x in buf:
|
290 |
+
yield x
|
291 |
+
|
292 |
+
|
293 |
+
def sort(data, sort_size=500, mode='train'):
|
294 |
+
""" Sort the data by feature length.
|
295 |
+
Sort is used after shuffle and before batch, so we can group
|
296 |
+
utts with similar lengths into a batch, and `sort_size` should
|
297 |
+
be less than `shuffle_size`
|
298 |
+
|
299 |
+
Args:
|
300 |
+
data: Iterable[{key, feat, label}]
|
301 |
+
sort_size: buffer size for sort
|
302 |
+
|
303 |
+
Returns:
|
304 |
+
Iterable[{key, feat, label}]
|
305 |
+
"""
|
306 |
+
|
307 |
+
buf = []
|
308 |
+
for sample in data:
|
309 |
+
buf.append(sample)
|
310 |
+
if len(buf) >= sort_size:
|
311 |
+
buf.sort(key=lambda x: len(x['speech_token']))
|
312 |
+
for x in buf:
|
313 |
+
yield x
|
314 |
+
buf = []
|
315 |
+
# The sample left over
|
316 |
+
buf.sort(key=lambda x: len(x['speech_token']))
|
317 |
+
for x in buf:
|
318 |
+
yield x
|
319 |
+
|
320 |
+
|
321 |
+
def static_batch(data, batch_size=16):
|
322 |
+
""" Static batch the data by `batch_size`
|
323 |
+
|
324 |
+
Args:
|
325 |
+
data: Iterable[{key, feat, label}]
|
326 |
+
batch_size: batch size
|
327 |
+
|
328 |
+
Returns:
|
329 |
+
Iterable[List[{key, feat, label}]]
|
330 |
+
"""
|
331 |
+
buf = []
|
332 |
+
for sample in data:
|
333 |
+
buf.append(sample)
|
334 |
+
if len(buf) >= batch_size:
|
335 |
+
yield buf
|
336 |
+
buf = []
|
337 |
+
if len(buf) > 0:
|
338 |
+
yield buf
|
339 |
+
|
340 |
+
|
341 |
+
def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
|
342 |
+
""" Dynamic batch the data until the total frames in batch
|
343 |
+
reach `max_frames_in_batch`
|
344 |
+
|
345 |
+
Args:
|
346 |
+
data: Iterable[{key, feat, label}]
|
347 |
+
max_frames_in_batch: max_frames in one batch
|
348 |
+
|
349 |
+
Returns:
|
350 |
+
Iterable[List[{key, feat, label}]]
|
351 |
+
"""
|
352 |
+
buf = []
|
353 |
+
longest_frames = 0
|
354 |
+
for sample in data:
|
355 |
+
# assert 'speech_token' in sample
|
356 |
+
# assert isinstance(sample['speech_token'], torch.Tensor)
|
357 |
+
new_sample_frames = len(sample['speech_token'])
|
358 |
+
longest_frames = max(longest_frames, new_sample_frames)
|
359 |
+
frames_after_padding = longest_frames * (len(buf) + 1)
|
360 |
+
if frames_after_padding > max_frames_in_batch:
|
361 |
+
yield buf
|
362 |
+
buf = [sample]
|
363 |
+
longest_frames = new_sample_frames
|
364 |
+
else:
|
365 |
+
buf.append(sample)
|
366 |
+
if len(buf) > 0:
|
367 |
+
yield buf
|
368 |
+
|
369 |
+
|
370 |
+
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
|
371 |
+
""" Wrapper for static/dynamic batch
|
372 |
+
"""
|
373 |
+
if batch_type == 'static':
|
374 |
+
return static_batch(data, batch_size)
|
375 |
+
elif batch_type == 'dynamic':
|
376 |
+
return dynamic_batch(data, max_frames_in_batch)
|
377 |
+
else:
|
378 |
+
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
379 |
+
|
380 |
+
import torch.distributed as dist
|
381 |
+
|
382 |
+
def padding(data, **kw):
|
383 |
+
"""
|
384 |
+
padding 同时也承担“空 rank 补偿”职责:
|
385 |
+
如果本 rank 没有产出任何 batch,就 yield 一条 dummy,
|
386 |
+
保证所有 rank 的 DataLoader 迭代次数一致。
|
387 |
+
"""
|
388 |
+
real_yield = False
|
389 |
+
for batch in data:
|
390 |
+
real_yield = True
|
391 |
+
keys = [x['key'] for x in batch]
|
392 |
+
text_token = [torch.tensor(x['text_token'], dtype=torch.long) for x in batch]
|
393 |
+
speech_token = [torch.tensor(x['speech_token'], dtype=torch.long) for x in batch]
|
394 |
+
|
395 |
+
text_token_len = torch.tensor([t.size(0) for t in text_token], dtype=torch.long)
|
396 |
+
speech_token_len = torch.tensor([s.size(0) for s in speech_token], dtype=torch.long)
|
397 |
+
|
398 |
+
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
399 |
+
speech_token = pad_sequence(speech_token, batch_first=True, padding_value=0)
|
400 |
+
|
401 |
+
yield {
|
402 |
+
'key': keys,
|
403 |
+
'text_token': text_token,
|
404 |
+
'text_token_len': text_token_len,
|
405 |
+
'speech_token': speech_token,
|
406 |
+
'speech_token_len': speech_token_len,
|
407 |
+
}
|
408 |
+
|
409 |
+
# 如果本 rank 没产出任何 batch
|
410 |
+
if dist.is_initialized() and not real_yield:
|
411 |
+
dummy = {
|
412 |
+
'key': ['dummy'],
|
413 |
+
'text_token': torch.zeros(1, 1, dtype=torch.long),
|
414 |
+
'text_token_len': torch.tensor([1]),
|
415 |
+
'speech_token': torch.zeros(1, 1, dtype=torch.long),
|
416 |
+
'speech_token_len': torch.tensor([1]),
|
417 |
+
}
|
418 |
+
yield dummy
|
419 |
+
|
420 |
+
# def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
|
421 |
+
# """ Padding the data into training data
|
422 |
+
|
423 |
+
# Args:
|
424 |
+
# data: Iterable[List[{key, feat, label}]]
|
425 |
+
|
426 |
+
# Returns:
|
427 |
+
# Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
428 |
+
# """
|
429 |
+
# for sample in data:
|
430 |
+
# assert isinstance(sample, list)
|
431 |
+
# speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
|
432 |
+
# dtype=torch.int32)
|
433 |
+
# order = torch.argsort(speech_feat_len, descending=True)
|
434 |
+
|
435 |
+
# utts = [sample[i]['utt'] for i in order]
|
436 |
+
# speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
|
437 |
+
# speech_len = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
|
438 |
+
# speech = pad_sequence(speech, batch_first=True, padding_value=0)
|
439 |
+
# speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
440 |
+
# speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
441 |
+
# speech_token = pad_sequence(speech_token,
|
442 |
+
# batch_first=True,
|
443 |
+
# padding_value=0)
|
444 |
+
# speech_feat = [sample[i]['speech_feat'] for i in order]
|
445 |
+
# speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
446 |
+
# speech_feat = pad_sequence(speech_feat,
|
447 |
+
# batch_first=True,
|
448 |
+
# padding_value=0)
|
449 |
+
# text = [sample[i]['text'] for i in order]
|
450 |
+
# text_token = [torch.tensor(sample[i]['text_token']) for i in order]
|
451 |
+
# text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
452 |
+
# text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
453 |
+
# utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
454 |
+
# spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
455 |
+
# batch = {
|
456 |
+
# "utts": utts,
|
457 |
+
# "speech": speech,
|
458 |
+
# "speech_len": speech_len,
|
459 |
+
# "speech_token": speech_token,
|
460 |
+
# "speech_token_len": speech_token_len,
|
461 |
+
# "speech_feat": speech_feat,
|
462 |
+
# "speech_feat_len": speech_feat_len,
|
463 |
+
# "text": text,
|
464 |
+
# "text_token": text_token,
|
465 |
+
# "text_token_len": text_token_len,
|
466 |
+
# "utt_embedding": utt_embedding,
|
467 |
+
# "spk_embedding": spk_embedding,
|
468 |
+
# }
|
469 |
+
# if gan is True:
|
470 |
+
# # in gan train, we need pitch_feat
|
471 |
+
# pitch_feat = [sample[i]['pitch_feat'] for i in order]
|
472 |
+
# pitch_feat_len = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
|
473 |
+
# pitch_feat = pad_sequence(pitch_feat,
|
474 |
+
# batch_first=True,
|
475 |
+
# padding_value=0)
|
476 |
+
# batch["pitch_feat"] = pitch_feat
|
477 |
+
# batch["pitch_feat_len"] = pitch_feat_len
|
478 |
+
# else:
|
479 |
+
# # only gan train needs speech, delete it to save memory
|
480 |
+
# del batch["speech"]
|
481 |
+
# del batch["speech_len"]
|
482 |
+
# if dpo is True:
|
483 |
+
# reject_speech_token = [torch.tensor(sample[i]['reject_speech_token']) for i in order]
|
484 |
+
# reject_speech_token_len = torch.tensor([i.size(0) for i in reject_speech_token], dtype=torch.int32)
|
485 |
+
# reject_speech_token = pad_sequence(reject_speech_token,
|
486 |
+
# batch_first=True,
|
487 |
+
# padding_value=0)
|
488 |
+
# batch['reject_speech_token'] = reject_speech_token
|
489 |
+
# batch['reject_speech_token_len'] = reject_speech_token_len
|
490 |
+
# if use_spk_embedding is True:
|
491 |
+
# batch["embedding"] = batch["spk_embedding"]
|
492 |
+
# else:
|
493 |
+
# batch["embedding"] = batch["utt_embedding"]
|
494 |
+
# yield batch
|
cosyvoice/dataset/dataset.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import random
|
17 |
+
import math
|
18 |
+
from functools import partial
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.distributed as dist
|
22 |
+
from torch.utils.data import IterableDataset
|
23 |
+
from cosyvoice.utils.file_utils import read_lists
|
24 |
+
|
25 |
+
|
26 |
+
class Processor(IterableDataset):
|
27 |
+
|
28 |
+
def __init__(self, source, f, *args, **kw):
|
29 |
+
assert callable(f)
|
30 |
+
self.source = source
|
31 |
+
self.f = f
|
32 |
+
self.args = args
|
33 |
+
self.kw = kw
|
34 |
+
|
35 |
+
def set_epoch(self, epoch):
|
36 |
+
self.source.set_epoch(epoch)
|
37 |
+
|
38 |
+
def __iter__(self):
|
39 |
+
""" Return an iterator over the source dataset processed by the
|
40 |
+
given processor.
|
41 |
+
"""
|
42 |
+
assert self.source is not None
|
43 |
+
assert callable(self.f)
|
44 |
+
return self.f(iter(self.source), *self.args, **self.kw)
|
45 |
+
|
46 |
+
def apply(self, f):
|
47 |
+
assert callable(f)
|
48 |
+
return Processor(self, f, *self.args, **self.kw)
|
49 |
+
|
50 |
+
|
51 |
+
class DistributedSampler:
|
52 |
+
|
53 |
+
def __init__(self, shuffle=True, partition=True):
|
54 |
+
self.epoch = -1
|
55 |
+
self.update()
|
56 |
+
self.shuffle = shuffle
|
57 |
+
self.partition = partition
|
58 |
+
|
59 |
+
def update(self):
|
60 |
+
assert dist.is_available()
|
61 |
+
if dist.is_initialized():
|
62 |
+
self.rank = dist.get_rank()
|
63 |
+
self.world_size = dist.get_world_size()
|
64 |
+
else:
|
65 |
+
self.rank = 0
|
66 |
+
self.world_size = 1
|
67 |
+
worker_info = torch.utils.data.get_worker_info()
|
68 |
+
if worker_info is None:
|
69 |
+
self.worker_id = 0
|
70 |
+
self.num_workers = 1
|
71 |
+
else:
|
72 |
+
self.worker_id = worker_info.id
|
73 |
+
self.num_workers = worker_info.num_workers
|
74 |
+
return dict(rank=self.rank,
|
75 |
+
world_size=self.world_size,
|
76 |
+
worker_id=self.worker_id,
|
77 |
+
num_workers=self.num_workers)
|
78 |
+
|
79 |
+
def set_epoch(self, epoch):
|
80 |
+
self.epoch = epoch
|
81 |
+
|
82 |
+
def sample(self, data):
|
83 |
+
""" Sample data according to rank/world_size/num_workers
|
84 |
+
|
85 |
+
Args:
|
86 |
+
data(List): input data list
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
List: data list after sample
|
90 |
+
"""
|
91 |
+
data = list(range(len(data)))
|
92 |
+
# force datalist even
|
93 |
+
if self.partition:
|
94 |
+
if self.shuffle:
|
95 |
+
random.Random(self.epoch).shuffle(data)
|
96 |
+
if len(data) < self.world_size:
|
97 |
+
data = data * math.ceil(self.world_size / len(data))
|
98 |
+
data = data[:self.world_size]
|
99 |
+
data = data[self.rank::self.world_size]
|
100 |
+
if len(data) < self.num_workers:
|
101 |
+
data = data * math.ceil(self.num_workers / len(data))
|
102 |
+
data = data[:self.num_workers]
|
103 |
+
data = data[self.worker_id::self.num_workers]
|
104 |
+
return data
|
105 |
+
|
106 |
+
|
107 |
+
class DataList(IterableDataset):
|
108 |
+
|
109 |
+
def __init__(self, lists, shuffle=True, partition=True):
|
110 |
+
self.lists = lists
|
111 |
+
self.sampler = DistributedSampler(shuffle, partition)
|
112 |
+
|
113 |
+
def set_epoch(self, epoch):
|
114 |
+
self.sampler.set_epoch(epoch)
|
115 |
+
|
116 |
+
def __iter__(self):
|
117 |
+
sampler_info = self.sampler.update()
|
118 |
+
indexes = self.sampler.sample(self.lists)
|
119 |
+
for index in indexes:
|
120 |
+
data = dict(src=self.lists[index])
|
121 |
+
data.update(sampler_info)
|
122 |
+
yield data
|
123 |
+
|
124 |
+
|
125 |
+
def Dataset(data_list_file,
|
126 |
+
data_pipeline,
|
127 |
+
mode='train',
|
128 |
+
gan=False,
|
129 |
+
dpo=False,
|
130 |
+
shuffle=True,
|
131 |
+
partition=True):
|
132 |
+
""" Construct dataset from arguments
|
133 |
+
|
134 |
+
We have two shuffle stage in the Dataset. The first is global
|
135 |
+
shuffle at shards tar/raw file level. The second is global shuffle
|
136 |
+
at training samples level.
|
137 |
+
|
138 |
+
Args:
|
139 |
+
data_type(str): raw/shard
|
140 |
+
tokenizer (BaseTokenizer): tokenizer to tokenize
|
141 |
+
partition(bool): whether to do data partition in terms of rank
|
142 |
+
"""
|
143 |
+
lists = read_lists(data_list_file)
|
144 |
+
dataset = DataList(lists,
|
145 |
+
shuffle=shuffle,
|
146 |
+
partition=partition)
|
147 |
+
# map partial arg to padding func
|
148 |
+
data_pipeline[-1] = partial(data_pipeline[-1], gan=gan, dpo=dpo)
|
149 |
+
for func in data_pipeline:
|
150 |
+
dataset = Processor(dataset, func, mode=mode)
|
151 |
+
return dataset
|
cosyvoice/dataset/processor.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
import random
|
16 |
+
|
17 |
+
import pyarrow.parquet as pq
|
18 |
+
from io import BytesIO
|
19 |
+
import torch
|
20 |
+
import torchaudio
|
21 |
+
from torch.nn.utils.rnn import pad_sequence
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import pyworld as pw
|
24 |
+
|
25 |
+
|
26 |
+
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
|
27 |
+
|
28 |
+
|
29 |
+
def parquet_opener(data, mode='train', tts_data={}):
|
30 |
+
""" Give url or local file, return file descriptor
|
31 |
+
Inplace operation.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
data(Iterable[str]): url or local file list
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
Iterable[{src, stream}]
|
38 |
+
"""
|
39 |
+
for sample in data:
|
40 |
+
assert 'src' in sample
|
41 |
+
url = sample['src']
|
42 |
+
try:
|
43 |
+
for df in pq.ParquetFile(url).iter_batches(batch_size=64):
|
44 |
+
df = df.to_pandas()
|
45 |
+
for i in range(len(df)):
|
46 |
+
sample.update(dict(df.loc[i]))
|
47 |
+
if mode == 'train':
|
48 |
+
# NOTE do not return sample directly, must initialize a new dict
|
49 |
+
yield {**sample}
|
50 |
+
else:
|
51 |
+
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
52 |
+
yield {**sample, 'tts_index': index, 'tts_text': text}
|
53 |
+
except Exception as ex:
|
54 |
+
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
55 |
+
|
56 |
+
|
57 |
+
def filter(data,
|
58 |
+
max_length=10240,
|
59 |
+
min_length=10,
|
60 |
+
token_max_length=200,
|
61 |
+
token_min_length=1,
|
62 |
+
min_output_input_ratio=0.0005,
|
63 |
+
max_output_input_ratio=1,
|
64 |
+
mode='train'):
|
65 |
+
""" Filter sample according to feature and label length
|
66 |
+
Inplace operation.
|
67 |
+
|
68 |
+
Args::
|
69 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
70 |
+
max_length: drop utterance which is greater than max_length(10ms)
|
71 |
+
min_length: drop utterance which is less than min_length(10ms)
|
72 |
+
token_max_length: drop utterance which is greater than
|
73 |
+
token_max_length, especially when use char unit for
|
74 |
+
english modeling
|
75 |
+
token_min_length: drop utterance which is
|
76 |
+
less than token_max_length
|
77 |
+
min_output_input_ratio: minimal ration of
|
78 |
+
token_length / feats_length(10ms)
|
79 |
+
max_output_input_ratio: maximum ration of
|
80 |
+
token_length / feats_length(10ms)
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
Iterable[{key, wav, label, sample_rate}]
|
84 |
+
"""
|
85 |
+
for sample in data:
|
86 |
+
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
87 |
+
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
88 |
+
del sample['audio_data']
|
89 |
+
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
90 |
+
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
91 |
+
if num_frames < min_length:
|
92 |
+
continue
|
93 |
+
if num_frames > max_length:
|
94 |
+
continue
|
95 |
+
if len(sample['text_token']) < token_min_length:
|
96 |
+
continue
|
97 |
+
if len(sample['text_token']) > token_max_length:
|
98 |
+
continue
|
99 |
+
if len(sample['speech_token']) == 0:
|
100 |
+
continue
|
101 |
+
if 'reject_speech_token' in sample and len(sample['reject_speech_token']) == 0:
|
102 |
+
continue
|
103 |
+
if num_frames != 0:
|
104 |
+
if len(sample['text_token']) / num_frames < min_output_input_ratio:
|
105 |
+
continue
|
106 |
+
if len(sample['text_token']) / num_frames > max_output_input_ratio:
|
107 |
+
continue
|
108 |
+
yield sample
|
109 |
+
|
110 |
+
|
111 |
+
def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
|
112 |
+
""" Resample data.
|
113 |
+
Inplace operation.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
117 |
+
resample_rate: target resample rate
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
Iterable[{key, wav, label, sample_rate}]
|
121 |
+
"""
|
122 |
+
for sample in data:
|
123 |
+
assert 'sample_rate' in sample
|
124 |
+
assert 'speech' in sample
|
125 |
+
sample_rate = sample['sample_rate']
|
126 |
+
waveform = sample['speech']
|
127 |
+
if sample_rate != resample_rate:
|
128 |
+
if sample_rate < min_sample_rate:
|
129 |
+
continue
|
130 |
+
sample['sample_rate'] = resample_rate
|
131 |
+
sample['speech'] = torchaudio.transforms.Resample(
|
132 |
+
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
|
133 |
+
max_val = sample['speech'].abs().max()
|
134 |
+
if max_val > 1:
|
135 |
+
sample['speech'] /= max_val
|
136 |
+
yield sample
|
137 |
+
|
138 |
+
|
139 |
+
def truncate(data, truncate_length=24576, mode='train'):
|
140 |
+
""" Truncate data.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
144 |
+
truncate_length: truncate length
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
Iterable[{key, wav, label, sample_rate}]
|
148 |
+
"""
|
149 |
+
for sample in data:
|
150 |
+
waveform = sample['speech']
|
151 |
+
if waveform.shape[1] > truncate_length:
|
152 |
+
start = random.randint(0, waveform.shape[1] - truncate_length)
|
153 |
+
waveform = waveform[:, start: start + truncate_length]
|
154 |
+
else:
|
155 |
+
waveform = torch.concat([waveform, torch.zeros(1, truncate_length - waveform.shape[1])], dim=1)
|
156 |
+
sample['speech'] = waveform
|
157 |
+
yield sample
|
158 |
+
|
159 |
+
|
160 |
+
def compute_fbank(data,
|
161 |
+
feat_extractor,
|
162 |
+
token_mel_ratio=0,
|
163 |
+
mode='train'):
|
164 |
+
""" Extract fbank
|
165 |
+
|
166 |
+
Args:
|
167 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
168 |
+
|
169 |
+
Returns:
|
170 |
+
Iterable[{key, feat, label}]
|
171 |
+
"""
|
172 |
+
for sample in data:
|
173 |
+
assert 'sample_rate' in sample
|
174 |
+
assert 'speech' in sample
|
175 |
+
assert 'utt' in sample
|
176 |
+
assert 'text_token' in sample
|
177 |
+
waveform = sample['speech']
|
178 |
+
feat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
179 |
+
if token_mel_ratio != 0:
|
180 |
+
# trim to align speech_token and speech_feat
|
181 |
+
token_len = int(min(feat.shape[0] / token_mel_ratio, sample["speech_token"].shape[0]))
|
182 |
+
feat = feat[:token_mel_ratio * token_len]
|
183 |
+
sample["speech_token"] = sample["speech_token"][:token_len]
|
184 |
+
sample['speech_feat'] = feat
|
185 |
+
yield sample
|
186 |
+
|
187 |
+
|
188 |
+
def compute_f0(data, sample_rate, hop_size, mode='train'):
|
189 |
+
""" Extract f0
|
190 |
+
|
191 |
+
Args:
|
192 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
Iterable[{key, feat, label}]
|
196 |
+
"""
|
197 |
+
frame_period = hop_size * 1000 / sample_rate
|
198 |
+
for sample in data:
|
199 |
+
assert 'sample_rate' in sample
|
200 |
+
assert 'speech' in sample
|
201 |
+
assert 'utt' in sample
|
202 |
+
assert 'text_token' in sample
|
203 |
+
waveform = sample['speech']
|
204 |
+
_f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
|
205 |
+
if sum(_f0 != 0) < 5: # this happens when the algorithm fails
|
206 |
+
_f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
|
207 |
+
f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
|
208 |
+
f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
|
209 |
+
sample['pitch_feat'] = f0
|
210 |
+
yield sample
|
211 |
+
|
212 |
+
|
213 |
+
def parse_embedding(data, normalize, mode='train'):
|
214 |
+
""" Parse utt_embedding/spk_embedding
|
215 |
+
|
216 |
+
Args:
|
217 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
218 |
+
|
219 |
+
Returns:
|
220 |
+
Iterable[{key, feat, label}]
|
221 |
+
"""
|
222 |
+
for sample in data:
|
223 |
+
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
224 |
+
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
|
225 |
+
if normalize:
|
226 |
+
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
227 |
+
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
228 |
+
yield sample
|
229 |
+
|
230 |
+
|
231 |
+
def tokenize(data, get_tokenizer, allowed_special, mode='train'):
|
232 |
+
""" Decode text to chars or BPE
|
233 |
+
Inplace operation
|
234 |
+
|
235 |
+
Args:
|
236 |
+
data: Iterable[{key, wav, txt, sample_rate}]
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
Iterable[{key, wav, txt, tokens, label, sample_rate}]
|
240 |
+
"""
|
241 |
+
tokenizer = get_tokenizer()
|
242 |
+
for sample in data:
|
243 |
+
assert 'text' in sample
|
244 |
+
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
245 |
+
yield sample
|
246 |
+
|
247 |
+
|
248 |
+
def shuffle(data, shuffle_size=10000, mode='train'):
|
249 |
+
""" Local shuffle the data
|
250 |
+
|
251 |
+
Args:
|
252 |
+
data: Iterable[{key, feat, label}]
|
253 |
+
shuffle_size: buffer size for shuffle
|
254 |
+
|
255 |
+
Returns:
|
256 |
+
Iterable[{key, feat, label}]
|
257 |
+
"""
|
258 |
+
buf = []
|
259 |
+
for sample in data:
|
260 |
+
buf.append(sample)
|
261 |
+
if len(buf) >= shuffle_size:
|
262 |
+
random.shuffle(buf)
|
263 |
+
for x in buf:
|
264 |
+
yield x
|
265 |
+
buf = []
|
266 |
+
# The sample left over
|
267 |
+
random.shuffle(buf)
|
268 |
+
for x in buf:
|
269 |
+
yield x
|
270 |
+
|
271 |
+
|
272 |
+
def sort(data, sort_size=500, mode='train'):
|
273 |
+
""" Sort the data by feature length.
|
274 |
+
Sort is used after shuffle and before batch, so we can group
|
275 |
+
utts with similar lengths into a batch, and `sort_size` should
|
276 |
+
be less than `shuffle_size`
|
277 |
+
|
278 |
+
Args:
|
279 |
+
data: Iterable[{key, feat, label}]
|
280 |
+
sort_size: buffer size for sort
|
281 |
+
|
282 |
+
Returns:
|
283 |
+
Iterable[{key, feat, label}]
|
284 |
+
"""
|
285 |
+
|
286 |
+
buf = []
|
287 |
+
for sample in data:
|
288 |
+
buf.append(sample)
|
289 |
+
if len(buf) >= sort_size:
|
290 |
+
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
291 |
+
for x in buf:
|
292 |
+
yield x
|
293 |
+
buf = []
|
294 |
+
# The sample left over
|
295 |
+
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
296 |
+
for x in buf:
|
297 |
+
yield x
|
298 |
+
|
299 |
+
|
300 |
+
def static_batch(data, batch_size=16):
|
301 |
+
""" Static batch the data by `batch_size`
|
302 |
+
|
303 |
+
Args:
|
304 |
+
data: Iterable[{key, feat, label}]
|
305 |
+
batch_size: batch size
|
306 |
+
|
307 |
+
Returns:
|
308 |
+
Iterable[List[{key, feat, label}]]
|
309 |
+
"""
|
310 |
+
buf = []
|
311 |
+
for sample in data:
|
312 |
+
buf.append(sample)
|
313 |
+
if len(buf) >= batch_size:
|
314 |
+
yield buf
|
315 |
+
buf = []
|
316 |
+
if len(buf) > 0:
|
317 |
+
yield buf
|
318 |
+
|
319 |
+
|
320 |
+
def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
|
321 |
+
""" Dynamic batch the data until the total frames in batch
|
322 |
+
reach `max_frames_in_batch`
|
323 |
+
|
324 |
+
Args:
|
325 |
+
data: Iterable[{key, feat, label}]
|
326 |
+
max_frames_in_batch: max_frames in one batch
|
327 |
+
|
328 |
+
Returns:
|
329 |
+
Iterable[List[{key, feat, label}]]
|
330 |
+
"""
|
331 |
+
buf = []
|
332 |
+
longest_frames = 0
|
333 |
+
for sample in data:
|
334 |
+
assert 'speech_feat' in sample
|
335 |
+
assert isinstance(sample['speech_feat'], torch.Tensor)
|
336 |
+
new_sample_frames = sample['speech_feat'].size(0)
|
337 |
+
longest_frames = max(longest_frames, new_sample_frames)
|
338 |
+
frames_after_padding = longest_frames * (len(buf) + 1)
|
339 |
+
if frames_after_padding > max_frames_in_batch:
|
340 |
+
yield buf
|
341 |
+
buf = [sample]
|
342 |
+
longest_frames = new_sample_frames
|
343 |
+
else:
|
344 |
+
buf.append(sample)
|
345 |
+
if len(buf) > 0:
|
346 |
+
yield buf
|
347 |
+
|
348 |
+
|
349 |
+
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
|
350 |
+
""" Wrapper for static/dynamic batch
|
351 |
+
"""
|
352 |
+
if batch_type == 'static':
|
353 |
+
return static_batch(data, batch_size)
|
354 |
+
elif batch_type == 'dynamic':
|
355 |
+
return dynamic_batch(data, max_frames_in_batch)
|
356 |
+
else:
|
357 |
+
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
358 |
+
|
359 |
+
|
360 |
+
def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
|
361 |
+
""" Padding the data into training data
|
362 |
+
|
363 |
+
Args:
|
364 |
+
data: Iterable[List[{key, feat, label}]]
|
365 |
+
|
366 |
+
Returns:
|
367 |
+
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
368 |
+
"""
|
369 |
+
for sample in data:
|
370 |
+
assert isinstance(sample, list)
|
371 |
+
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
|
372 |
+
dtype=torch.int32)
|
373 |
+
order = torch.argsort(speech_feat_len, descending=True)
|
374 |
+
|
375 |
+
utts = [sample[i]['utt'] for i in order]
|
376 |
+
speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
|
377 |
+
speech_len = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
|
378 |
+
speech = pad_sequence(speech, batch_first=True, padding_value=0)
|
379 |
+
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
380 |
+
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
381 |
+
speech_token = pad_sequence(speech_token,
|
382 |
+
batch_first=True,
|
383 |
+
padding_value=0)
|
384 |
+
speech_feat = [sample[i]['speech_feat'] for i in order]
|
385 |
+
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
386 |
+
speech_feat = pad_sequence(speech_feat,
|
387 |
+
batch_first=True,
|
388 |
+
padding_value=0)
|
389 |
+
text = [sample[i]['text'] for i in order]
|
390 |
+
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
|
391 |
+
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
392 |
+
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
393 |
+
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
394 |
+
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
395 |
+
batch = {
|
396 |
+
"utts": utts,
|
397 |
+
"speech": speech,
|
398 |
+
"speech_len": speech_len,
|
399 |
+
"speech_token": speech_token,
|
400 |
+
"speech_token_len": speech_token_len,
|
401 |
+
"speech_feat": speech_feat,
|
402 |
+
"speech_feat_len": speech_feat_len,
|
403 |
+
"text": text,
|
404 |
+
"text_token": text_token,
|
405 |
+
"text_token_len": text_token_len,
|
406 |
+
"utt_embedding": utt_embedding,
|
407 |
+
"spk_embedding": spk_embedding,
|
408 |
+
}
|
409 |
+
if gan is True:
|
410 |
+
# in gan train, we need pitch_feat
|
411 |
+
pitch_feat = [sample[i]['pitch_feat'] for i in order]
|
412 |
+
pitch_feat_len = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
|
413 |
+
pitch_feat = pad_sequence(pitch_feat,
|
414 |
+
batch_first=True,
|
415 |
+
padding_value=0)
|
416 |
+
batch["pitch_feat"] = pitch_feat
|
417 |
+
batch["pitch_feat_len"] = pitch_feat_len
|
418 |
+
else:
|
419 |
+
# only gan train needs speech, delete it to save memory
|
420 |
+
del batch["speech"]
|
421 |
+
del batch["speech_len"]
|
422 |
+
if dpo is True:
|
423 |
+
reject_speech_token = [torch.tensor(sample[i]['reject_speech_token']) for i in order]
|
424 |
+
reject_speech_token_len = torch.tensor([i.size(0) for i in reject_speech_token], dtype=torch.int32)
|
425 |
+
reject_speech_token = pad_sequence(reject_speech_token,
|
426 |
+
batch_first=True,
|
427 |
+
padding_value=0)
|
428 |
+
batch['reject_speech_token'] = reject_speech_token
|
429 |
+
batch['reject_speech_token_len'] = reject_speech_token_len
|
430 |
+
if use_spk_embedding is True:
|
431 |
+
batch["embedding"] = batch["spk_embedding"]
|
432 |
+
else:
|
433 |
+
batch["embedding"] = batch["utt_embedding"]
|
434 |
+
yield batch
|
cosyvoice/flow/__pycache__/decoder.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
cosyvoice/flow/__pycache__/flow.cpython-310.pyc
ADDED
Binary file (7.24 kB). View file
|
|
cosyvoice/flow/__pycache__/flow_matching.cpython-310.pyc
ADDED
Binary file (7.29 kB). View file
|
|
cosyvoice/flow/decoder.py
ADDED
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Tuple
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from einops import pack, rearrange, repeat
|
19 |
+
from cosyvoice.utils.common import mask_to_bias
|
20 |
+
from cosyvoice.utils.mask import add_optional_chunk_mask
|
21 |
+
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
22 |
+
from matcha.models.components.transformer import BasicTransformerBlock
|
23 |
+
|
24 |
+
|
25 |
+
class Transpose(torch.nn.Module):
|
26 |
+
def __init__(self, dim0: int, dim1: int):
|
27 |
+
super().__init__()
|
28 |
+
self.dim0 = dim0
|
29 |
+
self.dim1 = dim1
|
30 |
+
|
31 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
32 |
+
x = torch.transpose(x, self.dim0, self.dim1)
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class CausalConv1d(torch.nn.Conv1d):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
in_channels: int,
|
40 |
+
out_channels: int,
|
41 |
+
kernel_size: int,
|
42 |
+
stride: int = 1,
|
43 |
+
dilation: int = 1,
|
44 |
+
groups: int = 1,
|
45 |
+
bias: bool = True,
|
46 |
+
padding_mode: str = 'zeros',
|
47 |
+
device=None,
|
48 |
+
dtype=None
|
49 |
+
) -> None:
|
50 |
+
super(CausalConv1d, self).__init__(in_channels, out_channels,
|
51 |
+
kernel_size, stride,
|
52 |
+
padding=0, dilation=dilation,
|
53 |
+
groups=groups, bias=bias,
|
54 |
+
padding_mode=padding_mode,
|
55 |
+
device=device, dtype=dtype)
|
56 |
+
assert stride == 1
|
57 |
+
self.causal_padding = kernel_size - 1
|
58 |
+
|
59 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
60 |
+
x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
61 |
+
x = super(CausalConv1d, self).forward(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
|
65 |
+
class CausalBlock1D(Block1D):
|
66 |
+
def __init__(self, dim: int, dim_out: int):
|
67 |
+
super(CausalBlock1D, self).__init__(dim, dim_out)
|
68 |
+
self.block = torch.nn.Sequential(
|
69 |
+
CausalConv1d(dim, dim_out, 3),
|
70 |
+
Transpose(1, 2),
|
71 |
+
nn.LayerNorm(dim_out),
|
72 |
+
Transpose(1, 2),
|
73 |
+
nn.Mish(),
|
74 |
+
)
|
75 |
+
|
76 |
+
def forward(self, x: torch.Tensor, mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
77 |
+
output = self.block(x * mask)
|
78 |
+
return output * mask
|
79 |
+
|
80 |
+
|
81 |
+
class CausalResnetBlock1D(ResnetBlock1D):
|
82 |
+
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
|
83 |
+
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
84 |
+
self.block1 = CausalBlock1D(dim, dim_out)
|
85 |
+
self.block2 = CausalBlock1D(dim_out, dim_out)
|
86 |
+
|
87 |
+
|
88 |
+
class ConditionalDecoder(nn.Module):
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
in_channels,
|
92 |
+
out_channels,
|
93 |
+
channels=(256, 256),
|
94 |
+
dropout=0.05,
|
95 |
+
attention_head_dim=64,
|
96 |
+
n_blocks=1,
|
97 |
+
num_mid_blocks=2,
|
98 |
+
num_heads=4,
|
99 |
+
act_fn="snake",
|
100 |
+
):
|
101 |
+
"""
|
102 |
+
This decoder requires an input with the same shape of the target. So, if your text content
|
103 |
+
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
104 |
+
"""
|
105 |
+
super().__init__()
|
106 |
+
channels = tuple(channels)
|
107 |
+
self.in_channels = in_channels
|
108 |
+
self.out_channels = out_channels
|
109 |
+
|
110 |
+
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
111 |
+
time_embed_dim = channels[0] * 4
|
112 |
+
self.time_mlp = TimestepEmbedding(
|
113 |
+
in_channels=in_channels,
|
114 |
+
time_embed_dim=time_embed_dim,
|
115 |
+
act_fn="silu",
|
116 |
+
)
|
117 |
+
self.down_blocks = nn.ModuleList([])
|
118 |
+
self.mid_blocks = nn.ModuleList([])
|
119 |
+
self.up_blocks = nn.ModuleList([])
|
120 |
+
|
121 |
+
output_channel = in_channels
|
122 |
+
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
123 |
+
input_channel = output_channel
|
124 |
+
output_channel = channels[i]
|
125 |
+
is_last = i == len(channels) - 1
|
126 |
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
127 |
+
transformer_blocks = nn.ModuleList(
|
128 |
+
[
|
129 |
+
BasicTransformerBlock(
|
130 |
+
dim=output_channel,
|
131 |
+
num_attention_heads=num_heads,
|
132 |
+
attention_head_dim=attention_head_dim,
|
133 |
+
dropout=dropout,
|
134 |
+
activation_fn=act_fn,
|
135 |
+
)
|
136 |
+
for _ in range(n_blocks)
|
137 |
+
]
|
138 |
+
)
|
139 |
+
downsample = (
|
140 |
+
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
141 |
+
)
|
142 |
+
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
143 |
+
|
144 |
+
for _ in range(num_mid_blocks):
|
145 |
+
input_channel = channels[-1]
|
146 |
+
out_channels = channels[-1]
|
147 |
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
148 |
+
|
149 |
+
transformer_blocks = nn.ModuleList(
|
150 |
+
[
|
151 |
+
BasicTransformerBlock(
|
152 |
+
dim=output_channel,
|
153 |
+
num_attention_heads=num_heads,
|
154 |
+
attention_head_dim=attention_head_dim,
|
155 |
+
dropout=dropout,
|
156 |
+
activation_fn=act_fn,
|
157 |
+
)
|
158 |
+
for _ in range(n_blocks)
|
159 |
+
]
|
160 |
+
)
|
161 |
+
|
162 |
+
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
163 |
+
|
164 |
+
channels = channels[::-1] + (channels[0],)
|
165 |
+
for i in range(len(channels) - 1):
|
166 |
+
input_channel = channels[i] * 2
|
167 |
+
output_channel = channels[i + 1]
|
168 |
+
is_last = i == len(channels) - 2
|
169 |
+
resnet = ResnetBlock1D(
|
170 |
+
dim=input_channel,
|
171 |
+
dim_out=output_channel,
|
172 |
+
time_emb_dim=time_embed_dim,
|
173 |
+
)
|
174 |
+
transformer_blocks = nn.ModuleList(
|
175 |
+
[
|
176 |
+
BasicTransformerBlock(
|
177 |
+
dim=output_channel,
|
178 |
+
num_attention_heads=num_heads,
|
179 |
+
attention_head_dim=attention_head_dim,
|
180 |
+
dropout=dropout,
|
181 |
+
activation_fn=act_fn,
|
182 |
+
)
|
183 |
+
for _ in range(n_blocks)
|
184 |
+
]
|
185 |
+
)
|
186 |
+
upsample = (
|
187 |
+
Upsample1D(output_channel, use_conv_transpose=True)
|
188 |
+
if not is_last
|
189 |
+
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
190 |
+
)
|
191 |
+
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
192 |
+
self.final_block = Block1D(channels[-1], channels[-1])
|
193 |
+
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
194 |
+
self.initialize_weights()
|
195 |
+
|
196 |
+
def initialize_weights(self):
|
197 |
+
for m in self.modules():
|
198 |
+
if isinstance(m, nn.Conv1d):
|
199 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
200 |
+
if m.bias is not None:
|
201 |
+
nn.init.constant_(m.bias, 0)
|
202 |
+
elif isinstance(m, nn.GroupNorm):
|
203 |
+
nn.init.constant_(m.weight, 1)
|
204 |
+
nn.init.constant_(m.bias, 0)
|
205 |
+
elif isinstance(m, nn.Linear):
|
206 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
207 |
+
if m.bias is not None:
|
208 |
+
nn.init.constant_(m.bias, 0)
|
209 |
+
|
210 |
+
def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
|
211 |
+
"""Forward pass of the UNet1DConditional model.
|
212 |
+
|
213 |
+
Args:
|
214 |
+
x (torch.Tensor): shape (batch_size, in_channels, time)
|
215 |
+
mask (_type_): shape (batch_size, 1, time)
|
216 |
+
t (_type_): shape (batch_size)
|
217 |
+
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
218 |
+
cond (_type_, optional): placeholder for future use. Defaults to None.
|
219 |
+
|
220 |
+
Raises:
|
221 |
+
ValueError: _description_
|
222 |
+
ValueError: _description_
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
_type_: _description_
|
226 |
+
"""
|
227 |
+
|
228 |
+
t = self.time_embeddings(t).to(t.dtype)
|
229 |
+
t = self.time_mlp(t)
|
230 |
+
|
231 |
+
x = pack([x, mu], "b * t")[0]
|
232 |
+
|
233 |
+
if spks is not None:
|
234 |
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
235 |
+
x = pack([x, spks], "b * t")[0]
|
236 |
+
if cond is not None:
|
237 |
+
x = pack([x, cond], "b * t")[0]
|
238 |
+
|
239 |
+
hiddens = []
|
240 |
+
masks = [mask]
|
241 |
+
for resnet, transformer_blocks, downsample in self.down_blocks:
|
242 |
+
mask_down = masks[-1]
|
243 |
+
x = resnet(x, mask_down, t)
|
244 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
245 |
+
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
246 |
+
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
247 |
+
for transformer_block in transformer_blocks:
|
248 |
+
x = transformer_block(
|
249 |
+
hidden_states=x,
|
250 |
+
attention_mask=attn_mask,
|
251 |
+
timestep=t,
|
252 |
+
)
|
253 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
254 |
+
hiddens.append(x) # Save hidden states for skip connections
|
255 |
+
x = downsample(x * mask_down)
|
256 |
+
masks.append(mask_down[:, :, ::2])
|
257 |
+
masks = masks[:-1]
|
258 |
+
mask_mid = masks[-1]
|
259 |
+
|
260 |
+
for resnet, transformer_blocks in self.mid_blocks:
|
261 |
+
x = resnet(x, mask_mid, t)
|
262 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
263 |
+
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
264 |
+
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
265 |
+
for transformer_block in transformer_blocks:
|
266 |
+
x = transformer_block(
|
267 |
+
hidden_states=x,
|
268 |
+
attention_mask=attn_mask,
|
269 |
+
timestep=t,
|
270 |
+
)
|
271 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
272 |
+
|
273 |
+
for resnet, transformer_blocks, upsample in self.up_blocks:
|
274 |
+
mask_up = masks.pop()
|
275 |
+
skip = hiddens.pop()
|
276 |
+
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
277 |
+
x = resnet(x, mask_up, t)
|
278 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
279 |
+
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
280 |
+
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
281 |
+
for transformer_block in transformer_blocks:
|
282 |
+
x = transformer_block(
|
283 |
+
hidden_states=x,
|
284 |
+
attention_mask=attn_mask,
|
285 |
+
timestep=t,
|
286 |
+
)
|
287 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
288 |
+
x = upsample(x * mask_up)
|
289 |
+
x = self.final_block(x, mask_up)
|
290 |
+
output = self.final_proj(x * mask_up)
|
291 |
+
return output * mask
|
292 |
+
|
293 |
+
|
294 |
+
class CausalConditionalDecoder(ConditionalDecoder):
|
295 |
+
def __init__(
|
296 |
+
self,
|
297 |
+
in_channels,
|
298 |
+
out_channels,
|
299 |
+
channels=(256, 256),
|
300 |
+
dropout=0.05,
|
301 |
+
attention_head_dim=64,
|
302 |
+
n_blocks=1,
|
303 |
+
num_mid_blocks=2,
|
304 |
+
num_heads=4,
|
305 |
+
act_fn="snake",
|
306 |
+
static_chunk_size=50,
|
307 |
+
num_decoding_left_chunks=2,
|
308 |
+
):
|
309 |
+
"""
|
310 |
+
This decoder requires an input with the same shape of the target. So, if your text content
|
311 |
+
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
312 |
+
"""
|
313 |
+
torch.nn.Module.__init__(self)
|
314 |
+
channels = tuple(channels)
|
315 |
+
self.in_channels = in_channels
|
316 |
+
self.out_channels = out_channels
|
317 |
+
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
318 |
+
time_embed_dim = channels[0] * 4
|
319 |
+
self.time_mlp = TimestepEmbedding(
|
320 |
+
in_channels=in_channels,
|
321 |
+
time_embed_dim=time_embed_dim,
|
322 |
+
act_fn="silu",
|
323 |
+
)
|
324 |
+
self.static_chunk_size = static_chunk_size
|
325 |
+
self.num_decoding_left_chunks = num_decoding_left_chunks
|
326 |
+
self.down_blocks = nn.ModuleList([])
|
327 |
+
self.mid_blocks = nn.ModuleList([])
|
328 |
+
self.up_blocks = nn.ModuleList([])
|
329 |
+
|
330 |
+
output_channel = in_channels
|
331 |
+
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
332 |
+
input_channel = output_channel
|
333 |
+
output_channel = channels[i]
|
334 |
+
is_last = i == len(channels) - 1
|
335 |
+
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
336 |
+
transformer_blocks = nn.ModuleList(
|
337 |
+
[
|
338 |
+
BasicTransformerBlock(
|
339 |
+
dim=output_channel,
|
340 |
+
num_attention_heads=num_heads,
|
341 |
+
attention_head_dim=attention_head_dim,
|
342 |
+
dropout=dropout,
|
343 |
+
activation_fn=act_fn,
|
344 |
+
)
|
345 |
+
for _ in range(n_blocks)
|
346 |
+
]
|
347 |
+
)
|
348 |
+
downsample = (
|
349 |
+
Downsample1D(output_channel) if not is_last else CausalConv1d(output_channel, output_channel, 3)
|
350 |
+
)
|
351 |
+
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
352 |
+
|
353 |
+
for _ in range(num_mid_blocks):
|
354 |
+
input_channel = channels[-1]
|
355 |
+
out_channels = channels[-1]
|
356 |
+
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
357 |
+
|
358 |
+
transformer_blocks = nn.ModuleList(
|
359 |
+
[
|
360 |
+
BasicTransformerBlock(
|
361 |
+
dim=output_channel,
|
362 |
+
num_attention_heads=num_heads,
|
363 |
+
attention_head_dim=attention_head_dim,
|
364 |
+
dropout=dropout,
|
365 |
+
activation_fn=act_fn,
|
366 |
+
)
|
367 |
+
for _ in range(n_blocks)
|
368 |
+
]
|
369 |
+
)
|
370 |
+
|
371 |
+
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
372 |
+
|
373 |
+
channels = channels[::-1] + (channels[0],)
|
374 |
+
for i in range(len(channels) - 1):
|
375 |
+
input_channel = channels[i] * 2
|
376 |
+
output_channel = channels[i + 1]
|
377 |
+
is_last = i == len(channels) - 2
|
378 |
+
resnet = CausalResnetBlock1D(
|
379 |
+
dim=input_channel,
|
380 |
+
dim_out=output_channel,
|
381 |
+
time_emb_dim=time_embed_dim,
|
382 |
+
)
|
383 |
+
transformer_blocks = nn.ModuleList(
|
384 |
+
[
|
385 |
+
BasicTransformerBlock(
|
386 |
+
dim=output_channel,
|
387 |
+
num_attention_heads=num_heads,
|
388 |
+
attention_head_dim=attention_head_dim,
|
389 |
+
dropout=dropout,
|
390 |
+
activation_fn=act_fn,
|
391 |
+
)
|
392 |
+
for _ in range(n_blocks)
|
393 |
+
]
|
394 |
+
)
|
395 |
+
upsample = (
|
396 |
+
Upsample1D(output_channel, use_conv_transpose=True)
|
397 |
+
if not is_last
|
398 |
+
else CausalConv1d(output_channel, output_channel, 3)
|
399 |
+
)
|
400 |
+
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
401 |
+
self.final_block = CausalBlock1D(channels[-1], channels[-1])
|
402 |
+
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
403 |
+
self.initialize_weights()
|
404 |
+
|
405 |
+
def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
|
406 |
+
"""Forward pass of the UNet1DConditional model.
|
407 |
+
|
408 |
+
Args:
|
409 |
+
x (torch.Tensor): shape (batch_size, in_channels, time)
|
410 |
+
mask (_type_): shape (batch_size, 1, time)
|
411 |
+
t (_type_): shape (batch_size)
|
412 |
+
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
413 |
+
cond (_type_, optional): placeholder for future use. Defaults to None.
|
414 |
+
|
415 |
+
Raises:
|
416 |
+
ValueError: _description_
|
417 |
+
ValueError: _description_
|
418 |
+
|
419 |
+
Returns:
|
420 |
+
_type_: _description_
|
421 |
+
"""
|
422 |
+
t = self.time_embeddings(t).to(t.dtype)
|
423 |
+
t = self.time_mlp(t)
|
424 |
+
|
425 |
+
x = pack([x, mu], "b * t")[0]
|
426 |
+
|
427 |
+
if spks is not None:
|
428 |
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
429 |
+
x = pack([x, spks], "b * t")[0]
|
430 |
+
if cond is not None:
|
431 |
+
x = pack([x, cond], "b * t")[0]
|
432 |
+
|
433 |
+
hiddens = []
|
434 |
+
masks = [mask]
|
435 |
+
for resnet, transformer_blocks, downsample in self.down_blocks:
|
436 |
+
mask_down = masks[-1]
|
437 |
+
x = resnet(x, mask_down, t)
|
438 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
439 |
+
if streaming is True:
|
440 |
+
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
|
441 |
+
else:
|
442 |
+
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
443 |
+
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
444 |
+
for transformer_block in transformer_blocks:
|
445 |
+
x = transformer_block(
|
446 |
+
hidden_states=x,
|
447 |
+
attention_mask=attn_mask,
|
448 |
+
timestep=t,
|
449 |
+
)
|
450 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
451 |
+
hiddens.append(x) # Save hidden states for skip connections
|
452 |
+
x = downsample(x * mask_down)
|
453 |
+
masks.append(mask_down[:, :, ::2])
|
454 |
+
masks = masks[:-1]
|
455 |
+
mask_mid = masks[-1]
|
456 |
+
|
457 |
+
for resnet, transformer_blocks in self.mid_blocks:
|
458 |
+
x = resnet(x, mask_mid, t)
|
459 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
460 |
+
if streaming is True:
|
461 |
+
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
|
462 |
+
else:
|
463 |
+
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
464 |
+
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
465 |
+
for transformer_block in transformer_blocks:
|
466 |
+
x = transformer_block(
|
467 |
+
hidden_states=x,
|
468 |
+
attention_mask=attn_mask,
|
469 |
+
timestep=t,
|
470 |
+
)
|
471 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
472 |
+
|
473 |
+
for resnet, transformer_blocks, upsample in self.up_blocks:
|
474 |
+
mask_up = masks.pop()
|
475 |
+
skip = hiddens.pop()
|
476 |
+
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
477 |
+
x = resnet(x, mask_up, t)
|
478 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
479 |
+
if streaming is True:
|
480 |
+
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
|
481 |
+
else:
|
482 |
+
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
483 |
+
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
484 |
+
for transformer_block in transformer_blocks:
|
485 |
+
x = transformer_block(
|
486 |
+
hidden_states=x,
|
487 |
+
attention_mask=attn_mask,
|
488 |
+
timestep=t,
|
489 |
+
)
|
490 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
491 |
+
x = upsample(x * mask_up)
|
492 |
+
x = self.final_block(x, mask_up)
|
493 |
+
output = self.final_proj(x * mask_up)
|
494 |
+
return output * mask
|
cosyvoice/flow/flow.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
import random
|
16 |
+
from typing import Dict, Optional
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from torch.nn import functional as F
|
20 |
+
from omegaconf import DictConfig
|
21 |
+
from cosyvoice.utils.mask import make_pad_mask
|
22 |
+
|
23 |
+
|
24 |
+
class MaskedDiffWithXvec(torch.nn.Module):
|
25 |
+
def __init__(self,
|
26 |
+
input_size: int = 512,
|
27 |
+
output_size: int = 80,
|
28 |
+
spk_embed_dim: int = 192,
|
29 |
+
output_type: str = "mel",
|
30 |
+
vocab_size: int = 4096,
|
31 |
+
input_frame_rate: int = 50,
|
32 |
+
only_mask_loss: bool = True,
|
33 |
+
encoder: torch.nn.Module = None,
|
34 |
+
length_regulator: torch.nn.Module = None,
|
35 |
+
decoder: torch.nn.Module = None,
|
36 |
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
37 |
+
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
38 |
+
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
39 |
+
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
40 |
+
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
41 |
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
42 |
+
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
43 |
+
super().__init__()
|
44 |
+
self.input_size = input_size
|
45 |
+
self.output_size = output_size
|
46 |
+
self.decoder_conf = decoder_conf
|
47 |
+
self.mel_feat_conf = mel_feat_conf
|
48 |
+
self.vocab_size = vocab_size
|
49 |
+
self.output_type = output_type
|
50 |
+
self.input_frame_rate = input_frame_rate
|
51 |
+
logging.info(f"input frame rate={self.input_frame_rate}")
|
52 |
+
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
53 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
54 |
+
self.encoder = encoder
|
55 |
+
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
56 |
+
self.decoder = decoder
|
57 |
+
self.length_regulator = length_regulator
|
58 |
+
self.only_mask_loss = only_mask_loss
|
59 |
+
|
60 |
+
def forward(
|
61 |
+
self,
|
62 |
+
batch: dict,
|
63 |
+
device: torch.device,
|
64 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
65 |
+
token = batch['speech_token'].to(device)
|
66 |
+
token_len = batch['speech_token_len'].to(device)
|
67 |
+
feat = batch['speech_feat'].to(device)
|
68 |
+
feat_len = batch['speech_feat_len'].to(device)
|
69 |
+
embedding = batch['embedding'].to(device)
|
70 |
+
|
71 |
+
# xvec projection
|
72 |
+
embedding = F.normalize(embedding, dim=1)
|
73 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
74 |
+
|
75 |
+
# concat text and prompt_text
|
76 |
+
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
77 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
78 |
+
|
79 |
+
# text encode
|
80 |
+
h, h_lengths = self.encoder(token, token_len)
|
81 |
+
h = self.encoder_proj(h)
|
82 |
+
h, h_lengths = self.length_regulator(h, feat_len)
|
83 |
+
|
84 |
+
# get conditions
|
85 |
+
conds = torch.zeros(feat.shape, device=token.device)
|
86 |
+
for i, j in enumerate(feat_len):
|
87 |
+
if random.random() < 0.5:
|
88 |
+
continue
|
89 |
+
index = random.randint(0, int(0.3 * j))
|
90 |
+
conds[i, :index] = feat[i, :index]
|
91 |
+
conds = conds.transpose(1, 2)
|
92 |
+
|
93 |
+
mask = (~make_pad_mask(feat_len)).to(h)
|
94 |
+
# NOTE this is unnecessary, feat/h already same shape
|
95 |
+
loss, _ = self.decoder.compute_loss(
|
96 |
+
feat.transpose(1, 2).contiguous(),
|
97 |
+
mask.unsqueeze(1),
|
98 |
+
h.transpose(1, 2).contiguous(),
|
99 |
+
embedding,
|
100 |
+
cond=conds
|
101 |
+
)
|
102 |
+
return {'loss': loss}
|
103 |
+
|
104 |
+
@torch.inference_mode()
|
105 |
+
def inference(self,
|
106 |
+
token,
|
107 |
+
token_len,
|
108 |
+
prompt_token,
|
109 |
+
prompt_token_len,
|
110 |
+
prompt_feat,
|
111 |
+
prompt_feat_len,
|
112 |
+
embedding,
|
113 |
+
flow_cache):
|
114 |
+
assert token.shape[0] == 1
|
115 |
+
# xvec projection
|
116 |
+
embedding = F.normalize(embedding, dim=1)
|
117 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
118 |
+
|
119 |
+
# concat speech token and prompt speech token
|
120 |
+
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
121 |
+
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
122 |
+
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
123 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
124 |
+
|
125 |
+
# text encode
|
126 |
+
h, h_lengths = self.encoder(token, token_len)
|
127 |
+
h = self.encoder_proj(h)
|
128 |
+
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
|
129 |
+
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)
|
130 |
+
|
131 |
+
# get conditions
|
132 |
+
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
|
133 |
+
conds[:, :mel_len1] = prompt_feat
|
134 |
+
conds = conds.transpose(1, 2)
|
135 |
+
|
136 |
+
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
137 |
+
feat, flow_cache = self.decoder(
|
138 |
+
mu=h.transpose(1, 2).contiguous(),
|
139 |
+
mask=mask.unsqueeze(1),
|
140 |
+
spks=embedding,
|
141 |
+
cond=conds,
|
142 |
+
n_timesteps=10,
|
143 |
+
prompt_len=mel_len1,
|
144 |
+
cache=flow_cache
|
145 |
+
)
|
146 |
+
feat = feat[:, :, mel_len1:]
|
147 |
+
assert feat.shape[2] == mel_len2
|
148 |
+
return feat.float(), flow_cache
|
149 |
+
|
150 |
+
|
151 |
+
class CausalMaskedDiffWithXvec(torch.nn.Module):
|
152 |
+
def __init__(self,
|
153 |
+
input_size: int = 512,
|
154 |
+
output_size: int = 80,
|
155 |
+
spk_embed_dim: int = 192,
|
156 |
+
output_type: str = "mel",
|
157 |
+
vocab_size: int = 4096,
|
158 |
+
input_frame_rate: int = 50,
|
159 |
+
only_mask_loss: bool = True,
|
160 |
+
token_mel_ratio: int = 2,
|
161 |
+
pre_lookahead_len: int = 3,
|
162 |
+
encoder: torch.nn.Module = None,
|
163 |
+
decoder: torch.nn.Module = None,
|
164 |
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
165 |
+
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
166 |
+
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
167 |
+
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
168 |
+
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
169 |
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
170 |
+
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
171 |
+
super().__init__()
|
172 |
+
self.input_size = input_size
|
173 |
+
self.output_size = output_size
|
174 |
+
self.decoder_conf = decoder_conf
|
175 |
+
self.mel_feat_conf = mel_feat_conf
|
176 |
+
self.vocab_size = vocab_size
|
177 |
+
self.output_type = output_type
|
178 |
+
self.input_frame_rate = input_frame_rate
|
179 |
+
logging.info(f"input frame rate={self.input_frame_rate}")
|
180 |
+
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
181 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
182 |
+
self.encoder = encoder
|
183 |
+
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
184 |
+
self.decoder = decoder
|
185 |
+
self.only_mask_loss = only_mask_loss
|
186 |
+
self.token_mel_ratio = token_mel_ratio
|
187 |
+
self.pre_lookahead_len = pre_lookahead_len
|
188 |
+
|
189 |
+
def forward(
|
190 |
+
self,
|
191 |
+
batch: dict,
|
192 |
+
device: torch.device,
|
193 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
194 |
+
token = batch['speech_token'].to(device)
|
195 |
+
token_len = batch['speech_token_len'].to(device)
|
196 |
+
feat = batch['speech_feat'].to(device)
|
197 |
+
feat_len = batch['speech_feat_len'].to(device)
|
198 |
+
embedding = batch['embedding'].to(device)
|
199 |
+
|
200 |
+
# NOTE unified training, static_chunk_size > 0 or = 0
|
201 |
+
streaming = True if random.random() < 0.5 else False
|
202 |
+
|
203 |
+
# xvec projection
|
204 |
+
embedding = F.normalize(embedding, dim=1)
|
205 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
206 |
+
|
207 |
+
# concat text and prompt_text
|
208 |
+
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
209 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
210 |
+
|
211 |
+
# text encode
|
212 |
+
h, h_lengths = self.encoder(token, token_len, streaming=streaming)
|
213 |
+
h = self.encoder_proj(h)
|
214 |
+
|
215 |
+
# get conditions
|
216 |
+
conds = torch.zeros(feat.shape, device=token.device)
|
217 |
+
for i, j in enumerate(feat_len):
|
218 |
+
if random.random() < 0.5:
|
219 |
+
continue
|
220 |
+
index = random.randint(0, int(0.3 * j))
|
221 |
+
conds[i, :index] = feat[i, :index]
|
222 |
+
conds = conds.transpose(1, 2)
|
223 |
+
|
224 |
+
mask = (~make_pad_mask(h_lengths.sum(dim=-1).squeeze(dim=1))).to(h)
|
225 |
+
loss, _ = self.decoder.compute_loss(
|
226 |
+
feat.transpose(1, 2).contiguous(),
|
227 |
+
mask.unsqueeze(1),
|
228 |
+
h.transpose(1, 2).contiguous(),
|
229 |
+
embedding,
|
230 |
+
cond=conds,
|
231 |
+
streaming=streaming,
|
232 |
+
)
|
233 |
+
return {'loss': loss}
|
234 |
+
|
235 |
+
@torch.inference_mode()
|
236 |
+
def inference(self,
|
237 |
+
token,
|
238 |
+
token_len,
|
239 |
+
prompt_token,
|
240 |
+
prompt_token_len,
|
241 |
+
prompt_feat,
|
242 |
+
prompt_feat_len,
|
243 |
+
embedding,
|
244 |
+
streaming,
|
245 |
+
finalize):
|
246 |
+
assert token.shape[0] == 1
|
247 |
+
# xvec projection
|
248 |
+
embedding = F.normalize(embedding, dim=1)
|
249 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
250 |
+
|
251 |
+
# concat text and prompt_text
|
252 |
+
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
253 |
+
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
254 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
255 |
+
|
256 |
+
# text encode
|
257 |
+
if finalize is True:
|
258 |
+
h, h_lengths = self.encoder(token, token_len, streaming=streaming)
|
259 |
+
else:
|
260 |
+
token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:]
|
261 |
+
h, h_lengths = self.encoder(token, token_len, context=context, streaming=streaming)
|
262 |
+
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
263 |
+
h = self.encoder_proj(h)
|
264 |
+
|
265 |
+
# get conditions
|
266 |
+
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
|
267 |
+
conds[:, :mel_len1] = prompt_feat
|
268 |
+
conds = conds.transpose(1, 2)
|
269 |
+
|
270 |
+
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
271 |
+
feat, _ = self.decoder(
|
272 |
+
mu=h.transpose(1, 2).contiguous(),
|
273 |
+
mask=mask.unsqueeze(1),
|
274 |
+
spks=embedding,
|
275 |
+
cond=conds,
|
276 |
+
n_timesteps=10,
|
277 |
+
streaming=streaming
|
278 |
+
)
|
279 |
+
feat = feat[:, :, mel_len1:]
|
280 |
+
assert feat.shape[2] == mel_len2
|
281 |
+
return feat.float(), None
|
cosyvoice/flow/flow_matching.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import torch
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from matcha.models.components.flow_matching import BASECFM
|
18 |
+
from cosyvoice.utils.common import set_all_random_seed
|
19 |
+
|
20 |
+
|
21 |
+
class ConditionalCFM(BASECFM):
|
22 |
+
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
23 |
+
super().__init__(
|
24 |
+
n_feats=in_channels,
|
25 |
+
cfm_params=cfm_params,
|
26 |
+
n_spks=n_spks,
|
27 |
+
spk_emb_dim=spk_emb_dim,
|
28 |
+
)
|
29 |
+
self.t_scheduler = cfm_params.t_scheduler
|
30 |
+
self.training_cfg_rate = cfm_params.training_cfg_rate
|
31 |
+
self.inference_cfg_rate = cfm_params.inference_cfg_rate
|
32 |
+
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
33 |
+
# Just change the architecture of the estimator here
|
34 |
+
self.estimator = estimator
|
35 |
+
|
36 |
+
@torch.inference_mode()
|
37 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, cache=torch.zeros(1, 80, 0, 2)):
|
38 |
+
"""Forward diffusion
|
39 |
+
|
40 |
+
Args:
|
41 |
+
mu (torch.Tensor): output of encoder
|
42 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
43 |
+
mask (torch.Tensor): output_mask
|
44 |
+
shape: (batch_size, 1, mel_timesteps)
|
45 |
+
n_timesteps (int): number of diffusion steps
|
46 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
47 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
48 |
+
shape: (batch_size, spk_emb_dim)
|
49 |
+
cond: Not used but kept for future purposes
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
sample: generated mel-spectrogram
|
53 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
54 |
+
"""
|
55 |
+
|
56 |
+
z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
|
57 |
+
cache_size = cache.shape[2]
|
58 |
+
# fix prompt and overlap part mu and z
|
59 |
+
if cache_size != 0:
|
60 |
+
z[:, :, :cache_size] = cache[:, :, :, 0]
|
61 |
+
mu[:, :, :cache_size] = cache[:, :, :, 1]
|
62 |
+
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
|
63 |
+
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
|
64 |
+
cache = torch.stack([z_cache, mu_cache], dim=-1)
|
65 |
+
|
66 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
67 |
+
if self.t_scheduler == 'cosine':
|
68 |
+
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
69 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), cache
|
70 |
+
|
71 |
+
def solve_euler(self, x, t_span, mu, mask, spks, cond, streaming=False):
|
72 |
+
"""
|
73 |
+
Fixed euler solver for ODEs.
|
74 |
+
Args:
|
75 |
+
x (torch.Tensor): random noise
|
76 |
+
t_span (torch.Tensor): n_timesteps interpolated
|
77 |
+
shape: (n_timesteps + 1,)
|
78 |
+
mu (torch.Tensor): output of encoder
|
79 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
80 |
+
mask (torch.Tensor): output_mask
|
81 |
+
shape: (batch_size, 1, mel_timesteps)
|
82 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
83 |
+
shape: (batch_size, spk_emb_dim)
|
84 |
+
cond: Not used but kept for future purposes
|
85 |
+
"""
|
86 |
+
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
87 |
+
t = t.unsqueeze(dim=0)
|
88 |
+
|
89 |
+
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
90 |
+
# Or in future might add like a return_all_steps flag
|
91 |
+
sol = []
|
92 |
+
|
93 |
+
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
|
94 |
+
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
95 |
+
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
|
96 |
+
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
97 |
+
t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
|
98 |
+
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
|
99 |
+
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
100 |
+
for step in range(1, len(t_span)):
|
101 |
+
# Classifier-Free Guidance inference introduced in VoiceBox
|
102 |
+
x_in[:] = x
|
103 |
+
mask_in[:] = mask
|
104 |
+
mu_in[0] = mu
|
105 |
+
t_in[:] = t.unsqueeze(0)
|
106 |
+
spks_in[0] = spks
|
107 |
+
cond_in[0] = cond
|
108 |
+
dphi_dt = self.forward_estimator(
|
109 |
+
x_in, mask_in,
|
110 |
+
mu_in, t_in,
|
111 |
+
spks_in,
|
112 |
+
cond_in,
|
113 |
+
streaming
|
114 |
+
)
|
115 |
+
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
|
116 |
+
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
|
117 |
+
x = x + dt * dphi_dt
|
118 |
+
t = t + dt
|
119 |
+
sol.append(x)
|
120 |
+
if step < len(t_span) - 1:
|
121 |
+
dt = t_span[step + 1] - t
|
122 |
+
|
123 |
+
return sol[-1].float()
|
124 |
+
|
125 |
+
def forward_estimator(self, x, mask, mu, t, spks, cond, streaming=False):
|
126 |
+
if isinstance(self.estimator, torch.nn.Module):
|
127 |
+
return self.estimator(x, mask, mu, t, spks, cond, streaming=streaming)
|
128 |
+
else:
|
129 |
+
[estimator, stream], trt_engine = self.estimator.acquire_estimator()
|
130 |
+
# NOTE need to synchronize when switching stream
|
131 |
+
torch.cuda.current_stream().synchronize()
|
132 |
+
with stream:
|
133 |
+
estimator.set_input_shape('x', (2, 80, x.size(2)))
|
134 |
+
estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
135 |
+
estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
136 |
+
estimator.set_input_shape('t', (2,))
|
137 |
+
estimator.set_input_shape('spks', (2, 80))
|
138 |
+
estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
139 |
+
data_ptrs = [x.contiguous().data_ptr(),
|
140 |
+
mask.contiguous().data_ptr(),
|
141 |
+
mu.contiguous().data_ptr(),
|
142 |
+
t.contiguous().data_ptr(),
|
143 |
+
spks.contiguous().data_ptr(),
|
144 |
+
cond.contiguous().data_ptr(),
|
145 |
+
x.data_ptr()]
|
146 |
+
for i, j in enumerate(data_ptrs):
|
147 |
+
estimator.set_tensor_address(trt_engine.get_tensor_name(i), j)
|
148 |
+
# run trt engine
|
149 |
+
assert estimator.execute_async_v3(torch.cuda.current_stream().cuda_stream) is True
|
150 |
+
torch.cuda.current_stream().synchronize()
|
151 |
+
self.estimator.release_estimator(estimator, stream)
|
152 |
+
return x
|
153 |
+
|
154 |
+
def compute_loss(self, x1, mask, mu, spks=None, cond=None, streaming=False):
|
155 |
+
"""Computes diffusion loss
|
156 |
+
|
157 |
+
Args:
|
158 |
+
x1 (torch.Tensor): Target
|
159 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
160 |
+
mask (torch.Tensor): target mask
|
161 |
+
shape: (batch_size, 1, mel_timesteps)
|
162 |
+
mu (torch.Tensor): output of encoder
|
163 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
164 |
+
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
165 |
+
shape: (batch_size, spk_emb_dim)
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
loss: conditional flow matching loss
|
169 |
+
y: conditional flow
|
170 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
171 |
+
"""
|
172 |
+
b, _, t = mu.shape
|
173 |
+
|
174 |
+
# random timestep
|
175 |
+
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
|
176 |
+
if self.t_scheduler == 'cosine':
|
177 |
+
t = 1 - torch.cos(t * 0.5 * torch.pi)
|
178 |
+
# sample noise p(x_0)
|
179 |
+
z = torch.randn_like(x1)
|
180 |
+
|
181 |
+
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
182 |
+
u = x1 - (1 - self.sigma_min) * z
|
183 |
+
|
184 |
+
# during training, we randomly drop condition to trade off mode coverage and sample fidelity
|
185 |
+
if self.training_cfg_rate > 0:
|
186 |
+
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
|
187 |
+
mu = mu * cfg_mask.view(-1, 1, 1)
|
188 |
+
spks = spks * cfg_mask.view(-1, 1)
|
189 |
+
cond = cond * cfg_mask.view(-1, 1, 1)
|
190 |
+
|
191 |
+
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond, streaming=streaming)
|
192 |
+
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
193 |
+
return loss, y
|
194 |
+
|
195 |
+
|
196 |
+
class CausalConditionalCFM(ConditionalCFM):
|
197 |
+
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
198 |
+
super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
|
199 |
+
set_all_random_seed(0)
|
200 |
+
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
201 |
+
|
202 |
+
@torch.inference_mode()
|
203 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, streaming=False):
|
204 |
+
"""Forward diffusion
|
205 |
+
|
206 |
+
Args:
|
207 |
+
mu (torch.Tensor): output of encoder
|
208 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
209 |
+
mask (torch.Tensor): output_mask
|
210 |
+
shape: (batch_size, 1, mel_timesteps)
|
211 |
+
n_timesteps (int): number of diffusion steps
|
212 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
213 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
214 |
+
shape: (batch_size, spk_emb_dim)
|
215 |
+
cond: Not used but kept for future purposes
|
216 |
+
|
217 |
+
Returns:
|
218 |
+
sample: generated mel-spectrogram
|
219 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
220 |
+
"""
|
221 |
+
|
222 |
+
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature
|
223 |
+
# fix prompt and overlap part mu and z
|
224 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
225 |
+
if self.t_scheduler == 'cosine':
|
226 |
+
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
227 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond, streaming=streaming), None
|
cosyvoice/flow/length_regulator.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Tuple
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch
|
17 |
+
from torch.nn import functional as F
|
18 |
+
from cosyvoice.utils.mask import make_pad_mask
|
19 |
+
|
20 |
+
|
21 |
+
class InterpolateRegulator(nn.Module):
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
channels: int,
|
25 |
+
sampling_ratios: Tuple,
|
26 |
+
out_channels: int = None,
|
27 |
+
groups: int = 1,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.sampling_ratios = sampling_ratios
|
31 |
+
out_channels = out_channels or channels
|
32 |
+
model = nn.ModuleList([])
|
33 |
+
if len(sampling_ratios) > 0:
|
34 |
+
for _ in sampling_ratios:
|
35 |
+
module = nn.Conv1d(channels, channels, 3, 1, 1)
|
36 |
+
norm = nn.GroupNorm(groups, channels)
|
37 |
+
act = nn.Mish()
|
38 |
+
model.extend([module, norm, act])
|
39 |
+
model.append(
|
40 |
+
nn.Conv1d(channels, out_channels, 1, 1)
|
41 |
+
)
|
42 |
+
self.model = nn.Sequential(*model)
|
43 |
+
|
44 |
+
def forward(self, x, ylens=None):
|
45 |
+
# x in (B, T, D)
|
46 |
+
mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
|
47 |
+
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear')
|
48 |
+
out = self.model(x).transpose(1, 2).contiguous()
|
49 |
+
olens = ylens
|
50 |
+
return out * mask, olens
|
51 |
+
|
52 |
+
def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
|
53 |
+
# in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
|
54 |
+
# NOTE 20 corresponds to token_overlap_len in cosyvoice/cli/model.py
|
55 |
+
# x in (B, T, D)
|
56 |
+
if x2.shape[1] > 40:
|
57 |
+
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
58 |
+
x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - int(20 / input_frame_rate * 22050 / 256) * 2,
|
59 |
+
mode='linear')
|
60 |
+
x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
61 |
+
x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2)
|
62 |
+
else:
|
63 |
+
x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear')
|
64 |
+
if x1.shape[1] != 0:
|
65 |
+
x1 = F.interpolate(x1.transpose(1, 2).contiguous(), size=mel_len1, mode='linear')
|
66 |
+
x = torch.concat([x1, x2], dim=2)
|
67 |
+
else:
|
68 |
+
x = x2
|
69 |
+
out = self.model(x).transpose(1, 2).contiguous()
|
70 |
+
return out, mel_len1 + mel_len2
|
cosyvoice/hifigan/__pycache__/discriminator.cpython-310.pyc
ADDED
Binary file (8.75 kB). View file
|
|
cosyvoice/hifigan/__pycache__/f0_predictor.cpython-310.pyc
ADDED
Binary file (1.45 kB). View file
|
|
cosyvoice/hifigan/__pycache__/generator.cpython-310.pyc
ADDED
Binary file (14.9 kB). View file
|
|
cosyvoice/hifigan/__pycache__/hifigan.cpython-310.pyc
ADDED
Binary file (2.59 kB). View file
|
|
cosyvoice/hifigan/discriminator.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
try:
|
5 |
+
from torch.nn.utils.parametrizations import weight_norm, spectral_norm
|
6 |
+
except ImportError:
|
7 |
+
from torch.nn.utils import weight_norm, spectral_norm
|
8 |
+
from typing import List, Optional, Tuple
|
9 |
+
from einops import rearrange
|
10 |
+
from torchaudio.transforms import Spectrogram
|
11 |
+
|
12 |
+
LRELU_SLOPE = 0.1
|
13 |
+
|
14 |
+
|
15 |
+
class MultipleDiscriminator(nn.Module):
|
16 |
+
def __init__(
|
17 |
+
self, mpd: nn.Module, mrd: nn.Module
|
18 |
+
):
|
19 |
+
super().__init__()
|
20 |
+
self.mpd = mpd
|
21 |
+
self.mrd = mrd
|
22 |
+
|
23 |
+
def forward(self, y: torch.Tensor, y_hat: torch.Tensor):
|
24 |
+
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], []
|
25 |
+
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1))
|
26 |
+
y_d_rs += this_y_d_rs
|
27 |
+
y_d_gs += this_y_d_gs
|
28 |
+
fmap_rs += this_fmap_rs
|
29 |
+
fmap_gs += this_fmap_gs
|
30 |
+
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat)
|
31 |
+
y_d_rs += this_y_d_rs
|
32 |
+
y_d_gs += this_y_d_gs
|
33 |
+
fmap_rs += this_fmap_rs
|
34 |
+
fmap_gs += this_fmap_gs
|
35 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
36 |
+
|
37 |
+
|
38 |
+
class MultiResolutionDiscriminator(nn.Module):
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
|
42 |
+
num_embeddings: Optional[int] = None,
|
43 |
+
):
|
44 |
+
"""
|
45 |
+
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
|
46 |
+
Additionally, it allows incorporating conditional information with a learned embeddings table.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
|
50 |
+
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
|
51 |
+
Defaults to None.
|
52 |
+
"""
|
53 |
+
|
54 |
+
super().__init__()
|
55 |
+
self.discriminators = nn.ModuleList(
|
56 |
+
[DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
|
57 |
+
)
|
58 |
+
|
59 |
+
def forward(
|
60 |
+
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
|
61 |
+
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
62 |
+
y_d_rs = []
|
63 |
+
y_d_gs = []
|
64 |
+
fmap_rs = []
|
65 |
+
fmap_gs = []
|
66 |
+
|
67 |
+
for d in self.discriminators:
|
68 |
+
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
69 |
+
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
70 |
+
y_d_rs.append(y_d_r)
|
71 |
+
fmap_rs.append(fmap_r)
|
72 |
+
y_d_gs.append(y_d_g)
|
73 |
+
fmap_gs.append(fmap_g)
|
74 |
+
|
75 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
76 |
+
|
77 |
+
|
78 |
+
class DiscriminatorR(nn.Module):
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
window_length: int,
|
82 |
+
num_embeddings: Optional[int] = None,
|
83 |
+
channels: int = 32,
|
84 |
+
hop_factor: float = 0.25,
|
85 |
+
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
self.window_length = window_length
|
89 |
+
self.hop_factor = hop_factor
|
90 |
+
self.spec_fn = Spectrogram(
|
91 |
+
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
|
92 |
+
)
|
93 |
+
n_fft = window_length // 2 + 1
|
94 |
+
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
95 |
+
self.bands = bands
|
96 |
+
convs = lambda: nn.ModuleList(
|
97 |
+
[
|
98 |
+
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
|
99 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
100 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
101 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
102 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
|
103 |
+
]
|
104 |
+
)
|
105 |
+
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
106 |
+
|
107 |
+
if num_embeddings is not None:
|
108 |
+
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
|
109 |
+
torch.nn.init.zeros_(self.emb.weight)
|
110 |
+
|
111 |
+
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
|
112 |
+
|
113 |
+
def spectrogram(self, x):
|
114 |
+
# Remove DC offset
|
115 |
+
x = x - x.mean(dim=-1, keepdims=True)
|
116 |
+
# Peak normalize the volume of input audio
|
117 |
+
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
118 |
+
x = self.spec_fn(x)
|
119 |
+
x = torch.view_as_real(x)
|
120 |
+
x = rearrange(x, "b f t c -> b c t f")
|
121 |
+
# Split into bands
|
122 |
+
x_bands = [x[..., b[0]: b[1]] for b in self.bands]
|
123 |
+
return x_bands
|
124 |
+
|
125 |
+
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
|
126 |
+
x_bands = self.spectrogram(x)
|
127 |
+
fmap = []
|
128 |
+
x = []
|
129 |
+
for band, stack in zip(x_bands, self.band_convs):
|
130 |
+
for i, layer in enumerate(stack):
|
131 |
+
band = layer(band)
|
132 |
+
band = torch.nn.functional.leaky_relu(band, 0.1)
|
133 |
+
if i > 0:
|
134 |
+
fmap.append(band)
|
135 |
+
x.append(band)
|
136 |
+
x = torch.cat(x, dim=-1)
|
137 |
+
if cond_embedding_id is not None:
|
138 |
+
emb = self.emb(cond_embedding_id)
|
139 |
+
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
140 |
+
else:
|
141 |
+
h = 0
|
142 |
+
x = self.conv_post(x)
|
143 |
+
fmap.append(x)
|
144 |
+
x += h
|
145 |
+
|
146 |
+
return x, fmap
|
147 |
+
|
148 |
+
|
149 |
+
class MultiResSpecDiscriminator(torch.nn.Module):
|
150 |
+
|
151 |
+
def __init__(self,
|
152 |
+
fft_sizes=[1024, 2048, 512],
|
153 |
+
hop_sizes=[120, 240, 50],
|
154 |
+
win_lengths=[600, 1200, 240],
|
155 |
+
window="hann_window"):
|
156 |
+
|
157 |
+
super(MultiResSpecDiscriminator, self).__init__()
|
158 |
+
self.discriminators = nn.ModuleList([
|
159 |
+
SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
|
160 |
+
SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
|
161 |
+
SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)])
|
162 |
+
|
163 |
+
def forward(self, y, y_hat):
|
164 |
+
y_d_rs = []
|
165 |
+
y_d_gs = []
|
166 |
+
fmap_rs = []
|
167 |
+
fmap_gs = []
|
168 |
+
for _, d in enumerate(self.discriminators):
|
169 |
+
y_d_r, fmap_r = d(y)
|
170 |
+
y_d_g, fmap_g = d(y_hat)
|
171 |
+
y_d_rs.append(y_d_r)
|
172 |
+
fmap_rs.append(fmap_r)
|
173 |
+
y_d_gs.append(y_d_g)
|
174 |
+
fmap_gs.append(fmap_g)
|
175 |
+
|
176 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
177 |
+
|
178 |
+
|
179 |
+
def stft(x, fft_size, hop_size, win_length, window):
|
180 |
+
"""Perform STFT and convert to magnitude spectrogram.
|
181 |
+
Args:
|
182 |
+
x (Tensor): Input signal tensor (B, T).
|
183 |
+
fft_size (int): FFT size.
|
184 |
+
hop_size (int): Hop size.
|
185 |
+
win_length (int): Window length.
|
186 |
+
window (str): Window function type.
|
187 |
+
Returns:
|
188 |
+
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
|
189 |
+
"""
|
190 |
+
x_stft = torch.stft(x, fft_size, hop_size, win_length, window, return_complex=True)
|
191 |
+
|
192 |
+
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
|
193 |
+
return torch.abs(x_stft).transpose(2, 1)
|
194 |
+
|
195 |
+
|
196 |
+
class SpecDiscriminator(nn.Module):
|
197 |
+
"""docstring for Discriminator."""
|
198 |
+
|
199 |
+
def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
|
200 |
+
super(SpecDiscriminator, self).__init__()
|
201 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
202 |
+
self.fft_size = fft_size
|
203 |
+
self.shift_size = shift_size
|
204 |
+
self.win_length = win_length
|
205 |
+
self.window = getattr(torch, window)(win_length)
|
206 |
+
self.discriminators = nn.ModuleList([
|
207 |
+
norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
|
208 |
+
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
|
209 |
+
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
|
210 |
+
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
|
211 |
+
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))),
|
212 |
+
])
|
213 |
+
|
214 |
+
self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))
|
215 |
+
|
216 |
+
def forward(self, y):
|
217 |
+
|
218 |
+
fmap = []
|
219 |
+
y = y.squeeze(1)
|
220 |
+
y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.device))
|
221 |
+
y = y.unsqueeze(1)
|
222 |
+
for _, d in enumerate(self.discriminators):
|
223 |
+
y = d(y)
|
224 |
+
y = F.leaky_relu(y, LRELU_SLOPE)
|
225 |
+
fmap.append(y)
|
226 |
+
|
227 |
+
y = self.out(y)
|
228 |
+
fmap.append(y)
|
229 |
+
|
230 |
+
return torch.flatten(y, 1, -1), fmap
|
cosyvoice/hifigan/f0_predictor.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
try:
|
17 |
+
from torch.nn.utils.parametrizations import weight_norm
|
18 |
+
except ImportError:
|
19 |
+
from torch.nn.utils import weight_norm
|
20 |
+
|
21 |
+
|
22 |
+
class ConvRNNF0Predictor(nn.Module):
|
23 |
+
def __init__(self,
|
24 |
+
num_class: int = 1,
|
25 |
+
in_channels: int = 80,
|
26 |
+
cond_channels: int = 512
|
27 |
+
):
|
28 |
+
super().__init__()
|
29 |
+
|
30 |
+
self.num_class = num_class
|
31 |
+
self.condnet = nn.Sequential(
|
32 |
+
weight_norm(
|
33 |
+
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
|
34 |
+
),
|
35 |
+
nn.ELU(),
|
36 |
+
weight_norm(
|
37 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
38 |
+
),
|
39 |
+
nn.ELU(),
|
40 |
+
weight_norm(
|
41 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
42 |
+
),
|
43 |
+
nn.ELU(),
|
44 |
+
weight_norm(
|
45 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
46 |
+
),
|
47 |
+
nn.ELU(),
|
48 |
+
weight_norm(
|
49 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
50 |
+
),
|
51 |
+
nn.ELU(),
|
52 |
+
)
|
53 |
+
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
|
54 |
+
|
55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56 |
+
x = self.condnet(x)
|
57 |
+
x = x.transpose(1, 2)
|
58 |
+
return torch.abs(self.classifier(x).squeeze(-1))
|
cosyvoice/hifigan/generator.py
ADDED
@@ -0,0 +1,582 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""HIFI-GAN"""
|
16 |
+
|
17 |
+
from typing import Dict, Optional, List
|
18 |
+
import numpy as np
|
19 |
+
from scipy.signal import get_window
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from torch.nn import Conv1d
|
24 |
+
from torch.nn import ConvTranspose1d
|
25 |
+
from torch.nn.utils import remove_weight_norm
|
26 |
+
try:
|
27 |
+
from torch.nn.utils.parametrizations import weight_norm
|
28 |
+
except ImportError:
|
29 |
+
from torch.nn.utils import weight_norm
|
30 |
+
from torch.distributions.uniform import Uniform
|
31 |
+
|
32 |
+
from cosyvoice.transformer.activation import Snake
|
33 |
+
from cosyvoice.utils.common import get_padding
|
34 |
+
from cosyvoice.utils.common import init_weights
|
35 |
+
|
36 |
+
|
37 |
+
"""hifigan based generator implementation.
|
38 |
+
|
39 |
+
This code is modified from https://github.com/jik876/hifi-gan
|
40 |
+
,https://github.com/kan-bayashi/ParallelWaveGAN and
|
41 |
+
https://github.com/NVIDIA/BigVGAN
|
42 |
+
|
43 |
+
"""
|
44 |
+
|
45 |
+
|
46 |
+
class ResBlock(torch.nn.Module):
|
47 |
+
"""Residual block module in HiFiGAN/BigVGAN."""
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
channels: int = 512,
|
51 |
+
kernel_size: int = 3,
|
52 |
+
dilations: List[int] = [1, 3, 5],
|
53 |
+
):
|
54 |
+
super(ResBlock, self).__init__()
|
55 |
+
self.convs1 = nn.ModuleList()
|
56 |
+
self.convs2 = nn.ModuleList()
|
57 |
+
|
58 |
+
for dilation in dilations:
|
59 |
+
self.convs1.append(
|
60 |
+
weight_norm(
|
61 |
+
Conv1d(
|
62 |
+
channels,
|
63 |
+
channels,
|
64 |
+
kernel_size,
|
65 |
+
1,
|
66 |
+
dilation=dilation,
|
67 |
+
padding=get_padding(kernel_size, dilation)
|
68 |
+
)
|
69 |
+
)
|
70 |
+
)
|
71 |
+
self.convs2.append(
|
72 |
+
weight_norm(
|
73 |
+
Conv1d(
|
74 |
+
channels,
|
75 |
+
channels,
|
76 |
+
kernel_size,
|
77 |
+
1,
|
78 |
+
dilation=1,
|
79 |
+
padding=get_padding(kernel_size, 1)
|
80 |
+
)
|
81 |
+
)
|
82 |
+
)
|
83 |
+
self.convs1.apply(init_weights)
|
84 |
+
self.convs2.apply(init_weights)
|
85 |
+
self.activations1 = nn.ModuleList([
|
86 |
+
Snake(channels, alpha_logscale=False)
|
87 |
+
for _ in range(len(self.convs1))
|
88 |
+
])
|
89 |
+
self.activations2 = nn.ModuleList([
|
90 |
+
Snake(channels, alpha_logscale=False)
|
91 |
+
for _ in range(len(self.convs2))
|
92 |
+
])
|
93 |
+
|
94 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
95 |
+
for idx in range(len(self.convs1)):
|
96 |
+
xt = self.activations1[idx](x)
|
97 |
+
xt = self.convs1[idx](xt)
|
98 |
+
xt = self.activations2[idx](xt)
|
99 |
+
xt = self.convs2[idx](xt)
|
100 |
+
x = xt + x
|
101 |
+
return x
|
102 |
+
|
103 |
+
def remove_weight_norm(self):
|
104 |
+
for idx in range(len(self.convs1)):
|
105 |
+
remove_weight_norm(self.convs1[idx])
|
106 |
+
remove_weight_norm(self.convs2[idx])
|
107 |
+
|
108 |
+
|
109 |
+
class SineGen(torch.nn.Module):
|
110 |
+
""" Definition of sine generator
|
111 |
+
SineGen(samp_rate, harmonic_num = 0,
|
112 |
+
sine_amp = 0.1, noise_std = 0.003,
|
113 |
+
voiced_threshold = 0,
|
114 |
+
flag_for_pulse=False)
|
115 |
+
samp_rate: sampling rate in Hz
|
116 |
+
harmonic_num: number of harmonic overtones (default 0)
|
117 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
118 |
+
noise_std: std of Gaussian noise (default 0.003)
|
119 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
120 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
121 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
122 |
+
segment is always sin(np.pi) or cos(0)
|
123 |
+
"""
|
124 |
+
|
125 |
+
def __init__(self, samp_rate, harmonic_num=0,
|
126 |
+
sine_amp=0.1, noise_std=0.003,
|
127 |
+
voiced_threshold=0):
|
128 |
+
super(SineGen, self).__init__()
|
129 |
+
self.sine_amp = sine_amp
|
130 |
+
self.noise_std = noise_std
|
131 |
+
self.harmonic_num = harmonic_num
|
132 |
+
self.sampling_rate = samp_rate
|
133 |
+
self.voiced_threshold = voiced_threshold
|
134 |
+
|
135 |
+
def _f02uv(self, f0):
|
136 |
+
# generate uv signal
|
137 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
138 |
+
return uv
|
139 |
+
|
140 |
+
@torch.no_grad()
|
141 |
+
def forward(self, f0):
|
142 |
+
"""
|
143 |
+
:param f0: [B, 1, sample_len], Hz
|
144 |
+
:return: [B, 1, sample_len]
|
145 |
+
"""
|
146 |
+
|
147 |
+
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
|
148 |
+
for i in range(self.harmonic_num + 1):
|
149 |
+
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
|
150 |
+
|
151 |
+
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
|
152 |
+
u_dist = Uniform(low=-np.pi, high=np.pi)
|
153 |
+
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
|
154 |
+
phase_vec[:, 0, :] = 0
|
155 |
+
|
156 |
+
# generate sine waveforms
|
157 |
+
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
|
158 |
+
|
159 |
+
# generate uv signal
|
160 |
+
uv = self._f02uv(f0)
|
161 |
+
|
162 |
+
# noise: for unvoiced should be similar to sine_amp
|
163 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
164 |
+
# . for voiced regions is self.noise_std
|
165 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
166 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
167 |
+
|
168 |
+
# first: set the unvoiced part to 0 by uv
|
169 |
+
# then: additive noise
|
170 |
+
sine_waves = sine_waves * uv + noise
|
171 |
+
return sine_waves, uv, noise
|
172 |
+
|
173 |
+
|
174 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
175 |
+
""" SourceModule for hn-nsf
|
176 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
177 |
+
add_noise_std=0.003, voiced_threshod=0)
|
178 |
+
sampling_rate: sampling_rate in Hz
|
179 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
180 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
181 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
182 |
+
note that amplitude of noise in unvoiced is decided
|
183 |
+
by sine_amp
|
184 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
185 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
186 |
+
F0_sampled (batchsize, length, 1)
|
187 |
+
Sine_source (batchsize, length, 1)
|
188 |
+
noise_source (batchsize, length 1)
|
189 |
+
uv (batchsize, length, 1)
|
190 |
+
"""
|
191 |
+
|
192 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
193 |
+
add_noise_std=0.003, voiced_threshod=0):
|
194 |
+
super(SourceModuleHnNSF, self).__init__()
|
195 |
+
|
196 |
+
self.sine_amp = sine_amp
|
197 |
+
self.noise_std = add_noise_std
|
198 |
+
|
199 |
+
# to produce sine waveforms
|
200 |
+
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
201 |
+
sine_amp, add_noise_std, voiced_threshod)
|
202 |
+
|
203 |
+
# to merge source harmonics into a single excitation
|
204 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
205 |
+
self.l_tanh = torch.nn.Tanh()
|
206 |
+
|
207 |
+
def forward(self, x):
|
208 |
+
"""
|
209 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
210 |
+
F0_sampled (batchsize, length, 1)
|
211 |
+
Sine_source (batchsize, length, 1)
|
212 |
+
noise_source (batchsize, length 1)
|
213 |
+
"""
|
214 |
+
# source for harmonic branch
|
215 |
+
with torch.no_grad():
|
216 |
+
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
|
217 |
+
sine_wavs = sine_wavs.transpose(1, 2)
|
218 |
+
uv = uv.transpose(1, 2)
|
219 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
220 |
+
|
221 |
+
# source for noise branch, in the same shape as uv
|
222 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
223 |
+
return sine_merge, noise, uv
|
224 |
+
|
225 |
+
|
226 |
+
class SineGen2(torch.nn.Module):
|
227 |
+
""" Definition of sine generator
|
228 |
+
SineGen(samp_rate, harmonic_num = 0,
|
229 |
+
sine_amp = 0.1, noise_std = 0.003,
|
230 |
+
voiced_threshold = 0,
|
231 |
+
flag_for_pulse=False)
|
232 |
+
samp_rate: sampling rate in Hz
|
233 |
+
harmonic_num: number of harmonic overtones (default 0)
|
234 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
235 |
+
noise_std: std of Gaussian noise (default 0.003)
|
236 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
237 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
238 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
239 |
+
segment is always sin(np.pi) or cos(0)
|
240 |
+
"""
|
241 |
+
|
242 |
+
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
243 |
+
sine_amp=0.1, noise_std=0.003,
|
244 |
+
voiced_threshold=0,
|
245 |
+
flag_for_pulse=False):
|
246 |
+
super(SineGen2, self).__init__()
|
247 |
+
self.sine_amp = sine_amp
|
248 |
+
self.noise_std = noise_std
|
249 |
+
self.harmonic_num = harmonic_num
|
250 |
+
self.dim = self.harmonic_num + 1
|
251 |
+
self.sampling_rate = samp_rate
|
252 |
+
self.voiced_threshold = voiced_threshold
|
253 |
+
self.flag_for_pulse = flag_for_pulse
|
254 |
+
self.upsample_scale = upsample_scale
|
255 |
+
|
256 |
+
def _f02uv(self, f0):
|
257 |
+
# generate uv signal
|
258 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
259 |
+
return uv
|
260 |
+
|
261 |
+
def _f02sine(self, f0_values):
|
262 |
+
""" f0_values: (batchsize, length, dim)
|
263 |
+
where dim indicates fundamental tone and overtones
|
264 |
+
"""
|
265 |
+
# convert to F0 in rad. The interger part n can be ignored
|
266 |
+
# because 2 * np.pi * n doesn't affect phase
|
267 |
+
rad_values = (f0_values / self.sampling_rate) % 1
|
268 |
+
|
269 |
+
# initial phase noise (no noise for fundamental component)
|
270 |
+
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device)
|
271 |
+
rand_ini[:, 0] = 0
|
272 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
273 |
+
|
274 |
+
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
275 |
+
if not self.flag_for_pulse:
|
276 |
+
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
277 |
+
scale_factor=1 / self.upsample_scale,
|
278 |
+
mode="linear").transpose(1, 2)
|
279 |
+
|
280 |
+
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
281 |
+
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
282 |
+
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
283 |
+
sines = torch.sin(phase)
|
284 |
+
else:
|
285 |
+
# If necessary, make sure that the first time step of every
|
286 |
+
# voiced segments is sin(pi) or cos(0)
|
287 |
+
# This is used for pulse-train generation
|
288 |
+
|
289 |
+
# identify the last time step in unvoiced segments
|
290 |
+
uv = self._f02uv(f0_values)
|
291 |
+
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
292 |
+
uv_1[:, -1, :] = 1
|
293 |
+
u_loc = (uv < 1) * (uv_1 > 0)
|
294 |
+
|
295 |
+
# get the instantanouse phase
|
296 |
+
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
297 |
+
# different batch needs to be processed differently
|
298 |
+
for idx in range(f0_values.shape[0]):
|
299 |
+
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
300 |
+
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
301 |
+
# stores the accumulation of i.phase within
|
302 |
+
# each voiced segments
|
303 |
+
tmp_cumsum[idx, :, :] = 0
|
304 |
+
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
305 |
+
|
306 |
+
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
307 |
+
# within the previous voiced segment.
|
308 |
+
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
309 |
+
|
310 |
+
# get the sines
|
311 |
+
sines = torch.cos(i_phase * 2 * np.pi)
|
312 |
+
return sines
|
313 |
+
|
314 |
+
def forward(self, f0):
|
315 |
+
""" sine_tensor, uv = forward(f0)
|
316 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
317 |
+
f0 for unvoiced steps should be 0
|
318 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
319 |
+
output uv: tensor(batchsize=1, length, 1)
|
320 |
+
"""
|
321 |
+
# fundamental component
|
322 |
+
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
323 |
+
|
324 |
+
# generate sine waveforms
|
325 |
+
sine_waves = self._f02sine(fn) * self.sine_amp
|
326 |
+
|
327 |
+
# generate uv signal
|
328 |
+
uv = self._f02uv(f0)
|
329 |
+
|
330 |
+
# noise: for unvoiced should be similar to sine_amp
|
331 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
332 |
+
# . for voiced regions is self.noise_std
|
333 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
334 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
335 |
+
|
336 |
+
# first: set the unvoiced part to 0 by uv
|
337 |
+
# then: additive noise
|
338 |
+
sine_waves = sine_waves * uv + noise
|
339 |
+
return sine_waves, uv, noise
|
340 |
+
|
341 |
+
|
342 |
+
class SourceModuleHnNSF2(torch.nn.Module):
|
343 |
+
""" SourceModule for hn-nsf
|
344 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
345 |
+
add_noise_std=0.003, voiced_threshod=0)
|
346 |
+
sampling_rate: sampling_rate in Hz
|
347 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
348 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
349 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
350 |
+
note that amplitude of noise in unvoiced is decided
|
351 |
+
by sine_amp
|
352 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
353 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
354 |
+
F0_sampled (batchsize, length, 1)
|
355 |
+
Sine_source (batchsize, length, 1)
|
356 |
+
noise_source (batchsize, length 1)
|
357 |
+
uv (batchsize, length, 1)
|
358 |
+
"""
|
359 |
+
|
360 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
361 |
+
add_noise_std=0.003, voiced_threshod=0):
|
362 |
+
super(SourceModuleHnNSF2, self).__init__()
|
363 |
+
|
364 |
+
self.sine_amp = sine_amp
|
365 |
+
self.noise_std = add_noise_std
|
366 |
+
|
367 |
+
# to produce sine waveforms
|
368 |
+
self.l_sin_gen = SineGen2(sampling_rate, upsample_scale, harmonic_num,
|
369 |
+
sine_amp, add_noise_std, voiced_threshod)
|
370 |
+
|
371 |
+
# to merge source harmonics into a single excitation
|
372 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
373 |
+
self.l_tanh = torch.nn.Tanh()
|
374 |
+
|
375 |
+
def forward(self, x):
|
376 |
+
"""
|
377 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
378 |
+
F0_sampled (batchsize, length, 1)
|
379 |
+
Sine_source (batchsize, length, 1)
|
380 |
+
noise_source (batchsize, length 1)
|
381 |
+
"""
|
382 |
+
# source for harmonic branch
|
383 |
+
with torch.no_grad():
|
384 |
+
sine_wavs, uv, _ = self.l_sin_gen(x)
|
385 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
386 |
+
|
387 |
+
# source for noise branch, in the same shape as uv
|
388 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
389 |
+
return sine_merge, noise, uv
|
390 |
+
|
391 |
+
|
392 |
+
class HiFTGenerator(nn.Module):
|
393 |
+
"""
|
394 |
+
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
395 |
+
https://arxiv.org/abs/2309.09493
|
396 |
+
"""
|
397 |
+
def __init__(
|
398 |
+
self,
|
399 |
+
in_channels: int = 80,
|
400 |
+
base_channels: int = 512,
|
401 |
+
nb_harmonics: int = 8,
|
402 |
+
sampling_rate: int = 22050,
|
403 |
+
nsf_alpha: float = 0.1,
|
404 |
+
nsf_sigma: float = 0.003,
|
405 |
+
nsf_voiced_threshold: float = 10,
|
406 |
+
upsample_rates: List[int] = [8, 8],
|
407 |
+
upsample_kernel_sizes: List[int] = [16, 16],
|
408 |
+
istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
409 |
+
resblock_kernel_sizes: List[int] = [3, 7, 11],
|
410 |
+
resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
411 |
+
source_resblock_kernel_sizes: List[int] = [7, 11],
|
412 |
+
source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
|
413 |
+
lrelu_slope: float = 0.1,
|
414 |
+
audio_limit: float = 0.99,
|
415 |
+
f0_predictor: torch.nn.Module = None,
|
416 |
+
):
|
417 |
+
super(HiFTGenerator, self).__init__()
|
418 |
+
|
419 |
+
self.out_channels = 1
|
420 |
+
self.nb_harmonics = nb_harmonics
|
421 |
+
self.sampling_rate = sampling_rate
|
422 |
+
self.istft_params = istft_params
|
423 |
+
self.lrelu_slope = lrelu_slope
|
424 |
+
self.audio_limit = audio_limit
|
425 |
+
|
426 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
427 |
+
self.num_upsamples = len(upsample_rates)
|
428 |
+
# NOTE in CosyVoice2, we use the original SourceModuleHnNSF implementation
|
429 |
+
this_SourceModuleHnNSF = SourceModuleHnNSF if self.sampling_rate == 22050 else SourceModuleHnNSF2
|
430 |
+
self.m_source = this_SourceModuleHnNSF(
|
431 |
+
sampling_rate=sampling_rate,
|
432 |
+
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
433 |
+
harmonic_num=nb_harmonics,
|
434 |
+
sine_amp=nsf_alpha,
|
435 |
+
add_noise_std=nsf_sigma,
|
436 |
+
voiced_threshod=nsf_voiced_threshold)
|
437 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
438 |
+
|
439 |
+
self.conv_pre = weight_norm(
|
440 |
+
Conv1d(in_channels, base_channels, 7, 1, padding=3)
|
441 |
+
)
|
442 |
+
|
443 |
+
# Up
|
444 |
+
self.ups = nn.ModuleList()
|
445 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
446 |
+
self.ups.append(
|
447 |
+
weight_norm(
|
448 |
+
ConvTranspose1d(
|
449 |
+
base_channels // (2**i),
|
450 |
+
base_channels // (2**(i + 1)),
|
451 |
+
k,
|
452 |
+
u,
|
453 |
+
padding=(k - u) // 2,
|
454 |
+
)
|
455 |
+
)
|
456 |
+
)
|
457 |
+
|
458 |
+
# Down
|
459 |
+
self.source_downs = nn.ModuleList()
|
460 |
+
self.source_resblocks = nn.ModuleList()
|
461 |
+
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
462 |
+
downsample_cum_rates = np.cumprod(downsample_rates)
|
463 |
+
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
|
464 |
+
if u == 1:
|
465 |
+
self.source_downs.append(
|
466 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
467 |
+
)
|
468 |
+
else:
|
469 |
+
self.source_downs.append(
|
470 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
|
471 |
+
)
|
472 |
+
|
473 |
+
self.source_resblocks.append(
|
474 |
+
ResBlock(base_channels // (2 ** (i + 1)), k, d)
|
475 |
+
)
|
476 |
+
|
477 |
+
self.resblocks = nn.ModuleList()
|
478 |
+
for i in range(len(self.ups)):
|
479 |
+
ch = base_channels // (2**(i + 1))
|
480 |
+
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
481 |
+
self.resblocks.append(ResBlock(ch, k, d))
|
482 |
+
|
483 |
+
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
484 |
+
self.ups.apply(init_weights)
|
485 |
+
self.conv_post.apply(init_weights)
|
486 |
+
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
487 |
+
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
488 |
+
self.f0_predictor = f0_predictor
|
489 |
+
|
490 |
+
def remove_weight_norm(self):
|
491 |
+
print('Removing weight norm...')
|
492 |
+
for l in self.ups:
|
493 |
+
remove_weight_norm(l)
|
494 |
+
for l in self.resblocks:
|
495 |
+
l.remove_weight_norm()
|
496 |
+
remove_weight_norm(self.conv_pre)
|
497 |
+
remove_weight_norm(self.conv_post)
|
498 |
+
self.m_source.remove_weight_norm()
|
499 |
+
for l in self.source_downs:
|
500 |
+
remove_weight_norm(l)
|
501 |
+
for l in self.source_resblocks:
|
502 |
+
l.remove_weight_norm()
|
503 |
+
|
504 |
+
def _stft(self, x):
|
505 |
+
spec = torch.stft(
|
506 |
+
x,
|
507 |
+
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
|
508 |
+
return_complex=True)
|
509 |
+
spec = torch.view_as_real(spec) # [B, F, TT, 2]
|
510 |
+
return spec[..., 0], spec[..., 1]
|
511 |
+
|
512 |
+
def _istft(self, magnitude, phase):
|
513 |
+
magnitude = torch.clip(magnitude, max=1e2)
|
514 |
+
real = magnitude * torch.cos(phase)
|
515 |
+
img = magnitude * torch.sin(phase)
|
516 |
+
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
|
517 |
+
self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
518 |
+
return inverse_transform
|
519 |
+
|
520 |
+
def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
521 |
+
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
522 |
+
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
523 |
+
|
524 |
+
x = self.conv_pre(x)
|
525 |
+
for i in range(self.num_upsamples):
|
526 |
+
x = F.leaky_relu(x, self.lrelu_slope)
|
527 |
+
x = self.ups[i](x)
|
528 |
+
|
529 |
+
if i == self.num_upsamples - 1:
|
530 |
+
x = self.reflection_pad(x)
|
531 |
+
|
532 |
+
# fusion
|
533 |
+
si = self.source_downs[i](s_stft)
|
534 |
+
si = self.source_resblocks[i](si)
|
535 |
+
x = x + si
|
536 |
+
|
537 |
+
xs = None
|
538 |
+
for j in range(self.num_kernels):
|
539 |
+
if xs is None:
|
540 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
541 |
+
else:
|
542 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
543 |
+
x = xs / self.num_kernels
|
544 |
+
|
545 |
+
x = F.leaky_relu(x)
|
546 |
+
x = self.conv_post(x)
|
547 |
+
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
|
548 |
+
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
|
549 |
+
|
550 |
+
x = self._istft(magnitude, phase)
|
551 |
+
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
552 |
+
return x
|
553 |
+
|
554 |
+
def forward(
|
555 |
+
self,
|
556 |
+
batch: dict,
|
557 |
+
device: torch.device,
|
558 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
559 |
+
speech_feat = batch['speech_feat'].transpose(1, 2).to(device)
|
560 |
+
# mel->f0
|
561 |
+
f0 = self.f0_predictor(speech_feat)
|
562 |
+
# f0->source
|
563 |
+
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
564 |
+
s, _, _ = self.m_source(s)
|
565 |
+
s = s.transpose(1, 2)
|
566 |
+
# mel+source->speech
|
567 |
+
generated_speech = self.decode(x=speech_feat, s=s)
|
568 |
+
return generated_speech, f0
|
569 |
+
|
570 |
+
@torch.inference_mode()
|
571 |
+
def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
572 |
+
# mel->f0
|
573 |
+
f0 = self.f0_predictor(speech_feat)
|
574 |
+
# f0->source
|
575 |
+
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
576 |
+
s, _, _ = self.m_source(s)
|
577 |
+
s = s.transpose(1, 2)
|
578 |
+
# use cache_source to avoid glitch
|
579 |
+
if cache_source.shape[2] != 0:
|
580 |
+
s[:, :, :cache_source.shape[2]] = cache_source
|
581 |
+
generated_speech = self.decode(x=speech_feat, s=s)
|
582 |
+
return generated_speech, s
|
cosyvoice/hifigan/hifigan.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Optional
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from matcha.hifigan.models import feature_loss, generator_loss, discriminator_loss
|
6 |
+
from cosyvoice.utils.losses import tpr_loss, mel_loss
|
7 |
+
|
8 |
+
|
9 |
+
class HiFiGan(nn.Module):
|
10 |
+
def __init__(self, generator, discriminator, mel_spec_transform,
|
11 |
+
multi_mel_spectral_recon_loss_weight=45, feat_match_loss_weight=2.0,
|
12 |
+
tpr_loss_weight=1.0, tpr_loss_tau=0.04):
|
13 |
+
super(HiFiGan, self).__init__()
|
14 |
+
self.generator = generator
|
15 |
+
self.discriminator = discriminator
|
16 |
+
self.mel_spec_transform = mel_spec_transform
|
17 |
+
self.multi_mel_spectral_recon_loss_weight = multi_mel_spectral_recon_loss_weight
|
18 |
+
self.feat_match_loss_weight = feat_match_loss_weight
|
19 |
+
self.tpr_loss_weight = tpr_loss_weight
|
20 |
+
self.tpr_loss_tau = tpr_loss_tau
|
21 |
+
|
22 |
+
def forward(
|
23 |
+
self,
|
24 |
+
batch: dict,
|
25 |
+
device: torch.device,
|
26 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
27 |
+
if batch['turn'] == 'generator':
|
28 |
+
return self.forward_generator(batch, device)
|
29 |
+
else:
|
30 |
+
return self.forward_discriminator(batch, device)
|
31 |
+
|
32 |
+
def forward_generator(self, batch, device):
|
33 |
+
real_speech = batch['speech'].to(device)
|
34 |
+
pitch_feat = batch['pitch_feat'].to(device)
|
35 |
+
# 1. calculate generator outputs
|
36 |
+
generated_speech, generated_f0 = self.generator(batch, device)
|
37 |
+
# 2. calculate discriminator outputs
|
38 |
+
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
|
39 |
+
# 3. calculate generator losses, feature loss, mel loss, tpr losses [Optional]
|
40 |
+
loss_gen, _ = generator_loss(y_d_gs)
|
41 |
+
loss_fm = feature_loss(fmap_rs, fmap_gs)
|
42 |
+
loss_mel = mel_loss(real_speech, generated_speech, self.mel_spec_transform)
|
43 |
+
if self.tpr_loss_weight != 0:
|
44 |
+
loss_tpr = tpr_loss(y_d_gs, y_d_rs, self.tpr_loss_tau)
|
45 |
+
else:
|
46 |
+
loss_tpr = torch.zeros(1).to(device)
|
47 |
+
loss_f0 = F.l1_loss(generated_f0, pitch_feat)
|
48 |
+
loss = loss_gen + self.feat_match_loss_weight * loss_fm + \
|
49 |
+
self.multi_mel_spectral_recon_loss_weight * loss_mel + \
|
50 |
+
self.tpr_loss_weight * loss_tpr + loss_f0
|
51 |
+
return {'loss': loss, 'loss_gen': loss_gen, 'loss_fm': loss_fm, 'loss_mel': loss_mel, 'loss_tpr': loss_tpr, 'loss_f0': loss_f0}
|
52 |
+
|
53 |
+
def forward_discriminator(self, batch, device):
|
54 |
+
real_speech = batch['speech'].to(device)
|
55 |
+
# 1. calculate generator outputs
|
56 |
+
with torch.no_grad():
|
57 |
+
generated_speech, generated_f0 = self.generator(batch, device)
|
58 |
+
# 2. calculate discriminator outputs
|
59 |
+
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech.detach())
|
60 |
+
# 3. calculate discriminator losses, tpr losses [Optional]
|
61 |
+
loss_disc, _, _ = discriminator_loss(y_d_rs, y_d_gs)
|
62 |
+
if self.tpr_loss_weight != 0:
|
63 |
+
loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
|
64 |
+
else:
|
65 |
+
loss_tpr = torch.zeros(1).to(device)
|
66 |
+
loss = loss_disc + self.tpr_loss_weight * loss_tpr
|
67 |
+
return {'loss': loss, 'loss_disc': loss_disc, 'loss_tpr': loss_tpr}
|
cosyvoice/llm/__pycache__/llm.cpython-310.pyc
ADDED
Binary file (17 kB). View file
|
|
cosyvoice/llm/llm.py
ADDED
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
# 2025 Alibaba Inc (authors: Xiang Lyu, Yabin Li, Qihua, Shengqiang Li)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import queue
|
16 |
+
import random
|
17 |
+
import time
|
18 |
+
import threading
|
19 |
+
from typing import Dict, Optional, Callable, List, Generator
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from transformers import Qwen2ForCausalLM
|
24 |
+
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
25 |
+
from cosyvoice.utils.common import IGNORE_ID
|
26 |
+
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
27 |
+
from cosyvoice.utils.common import th_accuracy
|
28 |
+
from cosyvoice.utils.file_utils import logging
|
29 |
+
from cosyvoice.utils.mask import make_pad_mask
|
30 |
+
|
31 |
+
|
32 |
+
class TransformerLM(torch.nn.Module):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
text_encoder_input_size: int,
|
36 |
+
llm_input_size: int,
|
37 |
+
llm_output_size: int,
|
38 |
+
text_token_size: int,
|
39 |
+
speech_token_size: int,
|
40 |
+
text_encoder: torch.nn.Module,
|
41 |
+
llm: torch.nn.Module,
|
42 |
+
sampling: Callable,
|
43 |
+
length_normalized_loss: bool = True,
|
44 |
+
lsm_weight: float = 0.0,
|
45 |
+
spk_embed_dim: int = 192,
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
self.llm_input_size = llm_input_size
|
49 |
+
self.speech_token_size = speech_token_size
|
50 |
+
# 1. build text token inputs related modules
|
51 |
+
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
|
52 |
+
self.text_encoder = text_encoder
|
53 |
+
self.text_encoder_affine_layer = nn.Linear(
|
54 |
+
self.text_encoder.output_size(),
|
55 |
+
llm_input_size
|
56 |
+
)
|
57 |
+
|
58 |
+
# 2. build speech token language model related modules
|
59 |
+
self.sos_eos = 0
|
60 |
+
self.task_id = 1
|
61 |
+
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
62 |
+
self.llm = llm
|
63 |
+
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
|
64 |
+
self.criterion_ce = LabelSmoothingLoss(
|
65 |
+
size=speech_token_size + 1,
|
66 |
+
padding_idx=IGNORE_ID,
|
67 |
+
smoothing=lsm_weight,
|
68 |
+
normalize_length=length_normalized_loss,
|
69 |
+
)
|
70 |
+
|
71 |
+
# 3. [Optional] build speech token related modules
|
72 |
+
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
73 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
74 |
+
|
75 |
+
# 4. sampling method
|
76 |
+
self.sampling = sampling
|
77 |
+
|
78 |
+
def encode(
|
79 |
+
self,
|
80 |
+
text: torch.Tensor,
|
81 |
+
text_lengths: torch.Tensor,
|
82 |
+
):
|
83 |
+
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
|
84 |
+
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
|
85 |
+
encoder_out = self.text_encoder_affine_layer(encoder_out)
|
86 |
+
return encoder_out, encoder_out_lens
|
87 |
+
|
88 |
+
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
89 |
+
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
90 |
+
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
91 |
+
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
92 |
+
for i in range(len(text_token))]
|
93 |
+
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
94 |
+
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
95 |
+
return lm_input, lm_input_len
|
96 |
+
|
97 |
+
def forward(
|
98 |
+
self,
|
99 |
+
batch: dict,
|
100 |
+
device: torch.device,
|
101 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
102 |
+
"""
|
103 |
+
Args:
|
104 |
+
text: (B, L, D)
|
105 |
+
text_lengths: (B,)
|
106 |
+
audio: (B, T, N) or (B, T)
|
107 |
+
audio_lengths: (B,)
|
108 |
+
"""
|
109 |
+
text_token = batch['text_token'].to(device)
|
110 |
+
text_token_len = batch['text_token_len'].to(device)
|
111 |
+
speech_token = batch['speech_token'].to(device)
|
112 |
+
speech_token_len = batch['speech_token_len'].to(device)
|
113 |
+
embedding = batch['embedding'].to(device)
|
114 |
+
|
115 |
+
# 1. prepare llm_target
|
116 |
+
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
117 |
+
[self.speech_token_size]) for i in range(text_token.size(0))]
|
118 |
+
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
119 |
+
|
120 |
+
# 1. encode text_token
|
121 |
+
text_token = self.text_embedding(text_token)
|
122 |
+
text_token, text_token_len = self.encode(text_token, text_token_len)
|
123 |
+
|
124 |
+
# 2. embedding projection
|
125 |
+
embedding = F.normalize(embedding, dim=1)
|
126 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
127 |
+
embedding = embedding.unsqueeze(1)
|
128 |
+
|
129 |
+
# 3. eos and task_id
|
130 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
131 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
132 |
+
|
133 |
+
# 4. encode speech_token
|
134 |
+
speech_token = self.speech_embedding(speech_token)
|
135 |
+
|
136 |
+
# 5. unpad and pad
|
137 |
+
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
|
138 |
+
task_id_emb, speech_token, speech_token_len)
|
139 |
+
|
140 |
+
# 6. run lm forward
|
141 |
+
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
142 |
+
logits = self.llm_decoder(lm_output)
|
143 |
+
loss = self.criterion_ce(logits, lm_target)
|
144 |
+
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
|
145 |
+
return {'loss': loss, 'acc': acc}
|
146 |
+
|
147 |
+
def sampling_ids(
|
148 |
+
self,
|
149 |
+
weighted_scores: torch.Tensor,
|
150 |
+
decoded_tokens: List,
|
151 |
+
sampling: int,
|
152 |
+
ignore_eos: bool = True,
|
153 |
+
):
|
154 |
+
num_trials, max_trials = 0, 100
|
155 |
+
while True:
|
156 |
+
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
|
157 |
+
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
158 |
+
break
|
159 |
+
num_trials += 1
|
160 |
+
if num_trials > max_trials:
|
161 |
+
raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials))
|
162 |
+
return top_ids
|
163 |
+
|
164 |
+
@torch.inference_mode()
|
165 |
+
def inference(
|
166 |
+
self,
|
167 |
+
text: torch.Tensor,
|
168 |
+
text_len: torch.Tensor,
|
169 |
+
prompt_text: torch.Tensor,
|
170 |
+
prompt_text_len: torch.Tensor,
|
171 |
+
prompt_speech_token: torch.Tensor,
|
172 |
+
prompt_speech_token_len: torch.Tensor,
|
173 |
+
embedding: torch.Tensor,
|
174 |
+
sampling: int = 25,
|
175 |
+
max_token_text_ratio: float = 20,
|
176 |
+
min_token_text_ratio: float = 2,
|
177 |
+
uuid: str = '',
|
178 |
+
) -> Generator[torch.Tensor, None, None]:
|
179 |
+
device = text.device
|
180 |
+
text = torch.concat([prompt_text, text], dim=1)
|
181 |
+
text_len += prompt_text_len
|
182 |
+
text = self.text_embedding(text)
|
183 |
+
|
184 |
+
# 1. encode text
|
185 |
+
text, text_len = self.encode(text, text_len)
|
186 |
+
|
187 |
+
# 2. encode embedding
|
188 |
+
if embedding.shape[0] != 0:
|
189 |
+
embedding = F.normalize(embedding, dim=1)
|
190 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
191 |
+
embedding = embedding.unsqueeze(dim=1)
|
192 |
+
else:
|
193 |
+
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
|
194 |
+
|
195 |
+
# 3. concat llm_input
|
196 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
197 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
198 |
+
if prompt_speech_token_len != 0:
|
199 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
200 |
+
else:
|
201 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
202 |
+
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
203 |
+
|
204 |
+
# 4. cal min/max_length
|
205 |
+
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
206 |
+
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
207 |
+
|
208 |
+
# 5. step by step decode
|
209 |
+
out_tokens = []
|
210 |
+
offset = 0
|
211 |
+
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
212 |
+
for i in range(max_len):
|
213 |
+
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
|
214 |
+
att_cache=att_cache, cnn_cache=cnn_cache,
|
215 |
+
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
|
216 |
+
device=lm_input.device)).to(torch.bool))
|
217 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
218 |
+
# force continue decode first token
|
219 |
+
if i == 0:
|
220 |
+
logp[:, self.speech_token_size] = -float('inf')
|
221 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
222 |
+
if top_ids == self.speech_token_size:
|
223 |
+
break
|
224 |
+
# in stream mode, yield token one by one
|
225 |
+
yield top_ids
|
226 |
+
out_tokens.append(top_ids)
|
227 |
+
offset += lm_input.size(1)
|
228 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
229 |
+
|
230 |
+
|
231 |
+
class Qwen2Encoder(torch.nn.Module):
|
232 |
+
def __init__(self, pretrain_path):
|
233 |
+
super().__init__()
|
234 |
+
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
235 |
+
|
236 |
+
def forward(self, xs: torch.Tensor, xs_lens: torch.Tensor):
|
237 |
+
T = xs.size(1)
|
238 |
+
masks = ~make_pad_mask(xs_lens, T)
|
239 |
+
outs = self.model(
|
240 |
+
inputs_embeds=xs,
|
241 |
+
attention_mask=masks,
|
242 |
+
output_hidden_states=True,
|
243 |
+
return_dict=True,
|
244 |
+
)
|
245 |
+
return outs.hidden_states[-1], masks.unsqueeze(1)
|
246 |
+
|
247 |
+
def forward_one_step(self, xs, masks, cache=None):
|
248 |
+
input_masks = masks[:, -1, :]
|
249 |
+
outs = self.model(
|
250 |
+
inputs_embeds=xs,
|
251 |
+
attention_mask=input_masks,
|
252 |
+
output_hidden_states=True,
|
253 |
+
return_dict=True,
|
254 |
+
use_cache=True,
|
255 |
+
past_key_values=cache,
|
256 |
+
)
|
257 |
+
xs = outs.hidden_states[-1]
|
258 |
+
new_cache = outs.past_key_values
|
259 |
+
return xs, new_cache
|
260 |
+
|
261 |
+
|
262 |
+
class Qwen2LM(TransformerLM):
|
263 |
+
def __init__(
|
264 |
+
self,
|
265 |
+
llm_input_size: int,
|
266 |
+
llm_output_size: int,
|
267 |
+
speech_token_size: int,
|
268 |
+
llm: torch.nn.Module,
|
269 |
+
sampling: Callable,
|
270 |
+
length_normalized_loss: bool = True,
|
271 |
+
lsm_weight: float = 0.0,
|
272 |
+
mix_ratio: List[int] = [5, 15],
|
273 |
+
):
|
274 |
+
torch.nn.Module.__init__(self)
|
275 |
+
self.llm_input_size = llm_input_size
|
276 |
+
self.llm_output_size = llm_output_size
|
277 |
+
self.speech_token_size = speech_token_size
|
278 |
+
# 2. build speech token language model related modules
|
279 |
+
self.sos_eos = 0
|
280 |
+
self.task_id = 1
|
281 |
+
self.fill_token = 2
|
282 |
+
|
283 |
+
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
284 |
+
self.llm = llm
|
285 |
+
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
|
286 |
+
self.criterion_ce = LabelSmoothingLoss(
|
287 |
+
size=speech_token_size + 3,
|
288 |
+
padding_idx=IGNORE_ID,
|
289 |
+
smoothing=lsm_weight,
|
290 |
+
normalize_length=length_normalized_loss,
|
291 |
+
)
|
292 |
+
|
293 |
+
# 3. [Optional] build speech token related modules
|
294 |
+
self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
|
295 |
+
|
296 |
+
# 4. sampling method
|
297 |
+
self.sampling = sampling
|
298 |
+
self.mix_ratio = mix_ratio
|
299 |
+
|
300 |
+
# 5. vllm related
|
301 |
+
self.stop_token_ids = [speech_token_size + i for i in range(3)]
|
302 |
+
self.vllm_output_queue = {}
|
303 |
+
|
304 |
+
def prepare_lm_input_target(self, text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len):
|
305 |
+
lm_target, lm_input = [], []
|
306 |
+
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
307 |
+
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
308 |
+
text_token_emb = unpad_sequence(text_token_emb, text_token_len.cpu(), batch_first=True)
|
309 |
+
speech_token_emb = unpad_sequence(speech_token_emb, speech_token_len.cpu(), batch_first=True)
|
310 |
+
for i in range(len(text_token)):
|
311 |
+
# bistream sequence
|
312 |
+
if random.random() < 0.5 and speech_token_len[i] / text_token_len[i] > self.mix_ratio[1] / self.mix_ratio[0]:
|
313 |
+
this_lm_target, this_lm_input = [], []
|
314 |
+
this_lm_target.append(IGNORE_ID)
|
315 |
+
this_lm_input.append(self.llm_embedding.weight[self.sos_eos].reshape(1, -1))
|
316 |
+
for j in range(((text_token_len[i] + 1) / self.mix_ratio[0]).ceil().int().item()):
|
317 |
+
this_text_token = text_token[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]].tolist()
|
318 |
+
this_speech_token = speech_token[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]].tolist()
|
319 |
+
if len(this_text_token) == self.mix_ratio[0]:
|
320 |
+
assert len(this_speech_token) == self.mix_ratio[1]
|
321 |
+
this_lm_target += [IGNORE_ID] * (self.mix_ratio[0] - 1)
|
322 |
+
this_lm_target += this_speech_token
|
323 |
+
this_lm_target.append(self.speech_token_size + 2)
|
324 |
+
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]])
|
325 |
+
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]])
|
326 |
+
else:
|
327 |
+
this_lm_target += [-1] * len(this_text_token)
|
328 |
+
this_lm_target += speech_token[i][j * self.mix_ratio[1]:].tolist()
|
329 |
+
this_lm_target.append(self.speech_token_size)
|
330 |
+
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]:])
|
331 |
+
this_lm_input.append(self.llm_embedding.weight[self.task_id].reshape(1, -1))
|
332 |
+
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]:])
|
333 |
+
this_lm_target, this_lm_input = torch.tensor(this_lm_target), torch.concat(this_lm_input, dim=0)
|
334 |
+
# unistream sequence
|
335 |
+
else:
|
336 |
+
this_lm_target = torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i].tolist() + [self.speech_token_size])
|
337 |
+
this_lm_input = torch.concat([self.llm_embedding.weight[self.sos_eos].reshape(1, -1), text_token_emb[i],
|
338 |
+
self.llm_embedding.weight[self.task_id].reshape(1, -1), speech_token_emb[i]], dim=0)
|
339 |
+
lm_target.append(this_lm_target)
|
340 |
+
lm_input.append(this_lm_input)
|
341 |
+
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
342 |
+
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
343 |
+
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID)
|
344 |
+
return lm_target, lm_input, lm_input_len
|
345 |
+
|
346 |
+
def forward(
|
347 |
+
self,
|
348 |
+
batch: dict,
|
349 |
+
device: torch.device,
|
350 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
351 |
+
"""
|
352 |
+
Args:
|
353 |
+
text: (B, L, D)
|
354 |
+
text_lengths: (B,)
|
355 |
+
audio: (B, T, N) or (B, T)
|
356 |
+
audio_lengths: (B,)
|
357 |
+
"""
|
358 |
+
text_token = batch['text_token'].to(device)
|
359 |
+
text_token_len = batch['text_token_len'].to(device)
|
360 |
+
speech_token = batch['speech_token'].to(device)
|
361 |
+
speech_token_len = batch['speech_token_len'].to(device)
|
362 |
+
|
363 |
+
# 1. encode text_token
|
364 |
+
text_token_emb = self.llm.model.model.embed_tokens(text_token)
|
365 |
+
|
366 |
+
# 2. encode speech_token
|
367 |
+
speech_token_emb = self.speech_embedding(speech_token)
|
368 |
+
|
369 |
+
# 3. prepare llm_input/target
|
370 |
+
lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len)
|
371 |
+
lm_target = lm_target.to(device)
|
372 |
+
|
373 |
+
# 4. run lm forward
|
374 |
+
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
375 |
+
logits = self.llm_decoder(lm_output)
|
376 |
+
loss = self.criterion_ce(logits, lm_target.to(device))
|
377 |
+
acc = th_accuracy(logits.view(-1, self.speech_token_size + 3), lm_target, ignore_label=IGNORE_ID)
|
378 |
+
return {'loss': loss, 'acc': acc}
|
379 |
+
|
380 |
+
def forward_dpo(
|
381 |
+
self,
|
382 |
+
batch: dict,
|
383 |
+
device: torch.device,
|
384 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
385 |
+
text_token = batch['text_token'].to(device)
|
386 |
+
text_token_len = batch['text_token_len'].to(device)
|
387 |
+
speech_token = batch['speech_token'].to(device)
|
388 |
+
speech_token_len = batch['speech_token_len'].to(device)
|
389 |
+
reject_speech_token = batch['reject_speech_token'].to(device)
|
390 |
+
reject_speech_token_len = batch['reject_speech_token_len'].to(device)
|
391 |
+
|
392 |
+
# 1. encode text_token
|
393 |
+
text_token_emb = self.llm.model.model.embed_tokens(text_token)
|
394 |
+
|
395 |
+
# 2. encode speech_token
|
396 |
+
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
397 |
+
reject_speech_token = unpad_sequence(reject_speech_token, reject_speech_token_len.cpu(), batch_first=True)
|
398 |
+
speech_token_combined = speech_token + reject_speech_token
|
399 |
+
speech_token_combined = pad_sequence(speech_token_combined, batch_first=True, padding_value=0)
|
400 |
+
speech_token_combined_len = torch.concat([speech_token_len, reject_speech_token_len], dim=0)
|
401 |
+
speech_token_combined_emb = self.speech_embedding(speech_token_combined)
|
402 |
+
|
403 |
+
# 3. prepare llm_input/target
|
404 |
+
lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token.repeat(2, 1), text_token_emb.repeat(2, 1, 1), text_token_len.repeat(2),
|
405 |
+
speech_token_combined, speech_token_combined_emb, speech_token_combined_len)
|
406 |
+
lm_target = lm_target.to(device)
|
407 |
+
|
408 |
+
# 4. run lm forward
|
409 |
+
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
410 |
+
logits = self.llm_decoder(lm_output)
|
411 |
+
chosen_logits = logits[:text_token.shape[0]]
|
412 |
+
rejected_logits = logits[text_token.shape[0]:]
|
413 |
+
chosen_lm_target = lm_target[:text_token.shape[0]]
|
414 |
+
rejected_lm_target = lm_target[text_token.shape[0]:]
|
415 |
+
loss = self.criterion_ce(chosen_logits, chosen_lm_target.to(device))
|
416 |
+
acc = th_accuracy(chosen_logits.view(-1, self.speech_token_size + 3), chosen_lm_target, ignore_label=IGNORE_ID)
|
417 |
+
|
418 |
+
# 5. calculate dpo logits
|
419 |
+
chosen_lm_mask = chosen_lm_target == IGNORE_ID
|
420 |
+
rejected_lm_mask = rejected_lm_target == IGNORE_ID
|
421 |
+
chosen_logps = torch.gather(chosen_logits.log_softmax(dim=-1), dim=2, index=chosen_lm_target.masked_fill(chosen_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1)
|
422 |
+
rejected_logps = torch.gather(rejected_logits.log_softmax(dim=-1), dim=2, index=rejected_lm_target.masked_fill(rejected_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1)
|
423 |
+
chosen_logps = (chosen_logps * chosen_lm_mask).sum(dim=-1) / chosen_lm_mask.sum(dim=-1)
|
424 |
+
rejected_logps = (rejected_logps * rejected_lm_mask).sum(dim=-1) / rejected_lm_mask.sum(dim=-1)
|
425 |
+
return {'loss': loss, 'acc': acc, 'chosen_logps': chosen_logps, 'rejected_logps': rejected_logps}
|
426 |
+
|
427 |
+
@torch.inference_mode()
|
428 |
+
def inference(
|
429 |
+
self,
|
430 |
+
text: torch.Tensor,
|
431 |
+
text_len: torch.Tensor,
|
432 |
+
prompt_text: torch.Tensor,
|
433 |
+
prompt_text_len: torch.Tensor,
|
434 |
+
prompt_speech_token: torch.Tensor,
|
435 |
+
prompt_speech_token_len: torch.Tensor,
|
436 |
+
embedding: torch.Tensor,
|
437 |
+
sampling: int = 25,
|
438 |
+
max_token_text_ratio: float = 20,
|
439 |
+
min_token_text_ratio: float = 2,
|
440 |
+
uuid: str = '',
|
441 |
+
) -> Generator[torch.Tensor, None, None]:
|
442 |
+
device = text.device
|
443 |
+
text = torch.concat([prompt_text, text], dim=1)
|
444 |
+
text_len += prompt_text_len
|
445 |
+
text = self.llm.model.model.embed_tokens(text)
|
446 |
+
|
447 |
+
# 3. concat llm_input
|
448 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
449 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
450 |
+
if prompt_speech_token_len != 0:
|
451 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
452 |
+
else:
|
453 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
454 |
+
lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
455 |
+
|
456 |
+
# 4. cal min/max_length
|
457 |
+
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
458 |
+
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
459 |
+
|
460 |
+
# 5. step by step decode
|
461 |
+
for token in self.inference_wrapper(lm_input, sampling, min_len, max_len, uuid):
|
462 |
+
yield token
|
463 |
+
|
464 |
+
@torch.inference_mode()
|
465 |
+
def inference_wrapper(self, lm_input, sampling, min_len, max_len, uuid):
|
466 |
+
if hasattr(self, 'vllm'):
|
467 |
+
from vllm import SamplingParams, RequestOutput
|
468 |
+
sampling_params = SamplingParams(top_k=sampling,
|
469 |
+
stop_token_ids=self.stop_token_ids,
|
470 |
+
min_tokens=min_len,
|
471 |
+
max_tokens=max_len)
|
472 |
+
with self.lock:
|
473 |
+
self.vllm.add_request(uuid, {"prompt_embeds": lm_input.squeeze(0).to(torch.bfloat16).to(lm_input.device)}, sampling_params)
|
474 |
+
self.vllm_output_queue[uuid] = queue.Queue()
|
475 |
+
out_tokens = []
|
476 |
+
while True:
|
477 |
+
with self.lock:
|
478 |
+
if self.vllm_output_queue[uuid].empty() is True:
|
479 |
+
request_outputs: List[RequestOutput] = self.vllm.step()
|
480 |
+
for request_output in request_outputs:
|
481 |
+
top_ids = list(request_output.outputs[0].token_ids)[-1]
|
482 |
+
self.vllm_output_queue[request_output.request_id].put(top_ids)
|
483 |
+
if self.vllm_output_queue[uuid].empty() is False:
|
484 |
+
top_ids = self.vllm_output_queue[uuid].get()
|
485 |
+
if top_ids in self.stop_token_ids:
|
486 |
+
break
|
487 |
+
# in stream mode, yield token one by one
|
488 |
+
yield top_ids
|
489 |
+
out_tokens.append(top_ids)
|
490 |
+
if len(out_tokens) == max_len:
|
491 |
+
break
|
492 |
+
time.sleep(0.001)
|
493 |
+
with self.lock:
|
494 |
+
self.vllm_output_queue.pop(uuid)
|
495 |
+
else:
|
496 |
+
out_tokens = []
|
497 |
+
cache = None
|
498 |
+
for i in range(max_len):
|
499 |
+
y_pred, cache = self.llm.forward_one_step(lm_input,
|
500 |
+
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
501 |
+
cache=cache)
|
502 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
503 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
504 |
+
if top_ids == self.speech_token_size:
|
505 |
+
break
|
506 |
+
if top_ids > self.speech_token_size:
|
507 |
+
continue
|
508 |
+
# in stream mode, yield token one by one
|
509 |
+
yield top_ids
|
510 |
+
out_tokens.append(top_ids)
|
511 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
512 |
+
|
513 |
+
@torch.inference_mode()
|
514 |
+
def inference_bistream(
|
515 |
+
self,
|
516 |
+
text: Generator,
|
517 |
+
prompt_text: torch.Tensor,
|
518 |
+
prompt_text_len: torch.Tensor,
|
519 |
+
prompt_speech_token: torch.Tensor,
|
520 |
+
prompt_speech_token_len: torch.Tensor,
|
521 |
+
embedding: torch.Tensor,
|
522 |
+
sampling: int = 25,
|
523 |
+
max_token_text_ratio: float = 20,
|
524 |
+
min_token_text_ratio: float = 2,
|
525 |
+
) -> Generator[torch.Tensor, None, None]:
|
526 |
+
|
527 |
+
device = prompt_text.device
|
528 |
+
# 1. prepare input
|
529 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
530 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
531 |
+
if prompt_speech_token_len != 0:
|
532 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
533 |
+
else:
|
534 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
|
535 |
+
lm_input = torch.concat([sos_eos_emb], dim=1)
|
536 |
+
|
537 |
+
# 2. iterate text
|
538 |
+
out_tokens = []
|
539 |
+
cache = None
|
540 |
+
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
|
541 |
+
text_cache = self.llm.model.model.embed_tokens(prompt_text)
|
542 |
+
next_fill_index = -1
|
543 |
+
for this_text in text:
|
544 |
+
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
|
545 |
+
# prompt_speech_token_emb not empty, try append to lm_input
|
546 |
+
while prompt_speech_token_emb.size(1) != 0:
|
547 |
+
if text_cache.size(1) >= self.mix_ratio[0]:
|
548 |
+
lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
|
549 |
+
logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
|
550 |
+
lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
|
551 |
+
text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
|
552 |
+
else:
|
553 |
+
logging.info('not enough text token to decode, wait for more')
|
554 |
+
break
|
555 |
+
# no prompt_speech_token_emb remain, can decode some speech token
|
556 |
+
if prompt_speech_token_emb.size(1) == 0:
|
557 |
+
if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
|
558 |
+
logging.info('get fill token, need to append more text token')
|
559 |
+
if text_cache.size(1) >= self.mix_ratio[0]:
|
560 |
+
lm_input_text = text_cache[:, :self.mix_ratio[0]]
|
561 |
+
logging.info('append {} text token'.format(lm_input_text.size(1)))
|
562 |
+
if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
|
563 |
+
lm_input = lm_input_text
|
564 |
+
else:
|
565 |
+
lm_input = torch.concat([lm_input, lm_input_text], dim=1)
|
566 |
+
text_cache = text_cache[:, self.mix_ratio[0]:]
|
567 |
+
else:
|
568 |
+
logging.info('not enough text token to decode, wait for more')
|
569 |
+
continue
|
570 |
+
while True:
|
571 |
+
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
572 |
+
y_pred, cache = self.llm.forward_one_step(lm_input,
|
573 |
+
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
574 |
+
cache=cache)
|
575 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
576 |
+
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
577 |
+
top_ids = self.speech_token_size + 2
|
578 |
+
next_fill_index += (self.mix_ratio[1] + 1)
|
579 |
+
else:
|
580 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
|
581 |
+
if top_ids == self.speech_token_size + 2:
|
582 |
+
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
|
583 |
+
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
|
584 |
+
out_tokens.append(top_ids)
|
585 |
+
if top_ids >= self.speech_token_size:
|
586 |
+
if top_ids == self.speech_token_size + 2:
|
587 |
+
break
|
588 |
+
else:
|
589 |
+
raise ValueError('should not get token {}'.format(top_ids))
|
590 |
+
yield top_ids
|
591 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
592 |
+
|
593 |
+
# 3. final decode
|
594 |
+
lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
|
595 |
+
logging.info('no more text token, decode until met eos')
|
596 |
+
while True:
|
597 |
+
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
598 |
+
y_pred, cache = self.llm.forward_one_step(lm_input,
|
599 |
+
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
600 |
+
cache=cache)
|
601 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
602 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
|
603 |
+
out_tokens.append(top_ids)
|
604 |
+
if top_ids >= self.speech_token_size:
|
605 |
+
if top_ids == self.speech_token_size:
|
606 |
+
break
|
607 |
+
else:
|
608 |
+
raise ValueError('should not get token {}'.format(top_ids))
|
609 |
+
# in stream mode, yield token one by one
|
610 |
+
yield top_ids
|
611 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
cosyvoice/tokenizer/__pycache__/tokenizer.cpython-310.pyc
ADDED
Binary file (7.87 kB). View file
|
|
cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cosyvoice/tokenizer/tokenizer.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import os
|
3 |
+
from functools import lru_cache
|
4 |
+
from typing import Optional
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from whisper.tokenizer import Tokenizer
|
8 |
+
|
9 |
+
import tiktoken
|
10 |
+
|
11 |
+
LANGUAGES = {
|
12 |
+
"en": "english",
|
13 |
+
"zh": "chinese",
|
14 |
+
"de": "german",
|
15 |
+
"es": "spanish",
|
16 |
+
"ru": "russian",
|
17 |
+
"ko": "korean",
|
18 |
+
"fr": "french",
|
19 |
+
"ja": "japanese",
|
20 |
+
"pt": "portuguese",
|
21 |
+
"tr": "turkish",
|
22 |
+
"pl": "polish",
|
23 |
+
"ca": "catalan",
|
24 |
+
"nl": "dutch",
|
25 |
+
"ar": "arabic",
|
26 |
+
"sv": "swedish",
|
27 |
+
"it": "italian",
|
28 |
+
"id": "indonesian",
|
29 |
+
"hi": "hindi",
|
30 |
+
"fi": "finnish",
|
31 |
+
"vi": "vietnamese",
|
32 |
+
"he": "hebrew",
|
33 |
+
"uk": "ukrainian",
|
34 |
+
"el": "greek",
|
35 |
+
"ms": "malay",
|
36 |
+
"cs": "czech",
|
37 |
+
"ro": "romanian",
|
38 |
+
"da": "danish",
|
39 |
+
"hu": "hungarian",
|
40 |
+
"ta": "tamil",
|
41 |
+
"no": "norwegian",
|
42 |
+
"th": "thai",
|
43 |
+
"ur": "urdu",
|
44 |
+
"hr": "croatian",
|
45 |
+
"bg": "bulgarian",
|
46 |
+
"lt": "lithuanian",
|
47 |
+
"la": "latin",
|
48 |
+
"mi": "maori",
|
49 |
+
"ml": "malayalam",
|
50 |
+
"cy": "welsh",
|
51 |
+
"sk": "slovak",
|
52 |
+
"te": "telugu",
|
53 |
+
"fa": "persian",
|
54 |
+
"lv": "latvian",
|
55 |
+
"bn": "bengali",
|
56 |
+
"sr": "serbian",
|
57 |
+
"az": "azerbaijani",
|
58 |
+
"sl": "slovenian",
|
59 |
+
"kn": "kannada",
|
60 |
+
"et": "estonian",
|
61 |
+
"mk": "macedonian",
|
62 |
+
"br": "breton",
|
63 |
+
"eu": "basque",
|
64 |
+
"is": "icelandic",
|
65 |
+
"hy": "armenian",
|
66 |
+
"ne": "nepali",
|
67 |
+
"mn": "mongolian",
|
68 |
+
"bs": "bosnian",
|
69 |
+
"kk": "kazakh",
|
70 |
+
"sq": "albanian",
|
71 |
+
"sw": "swahili",
|
72 |
+
"gl": "galician",
|
73 |
+
"mr": "marathi",
|
74 |
+
"pa": "punjabi",
|
75 |
+
"si": "sinhala",
|
76 |
+
"km": "khmer",
|
77 |
+
"sn": "shona",
|
78 |
+
"yo": "yoruba",
|
79 |
+
"so": "somali",
|
80 |
+
"af": "afrikaans",
|
81 |
+
"oc": "occitan",
|
82 |
+
"ka": "georgian",
|
83 |
+
"be": "belarusian",
|
84 |
+
"tg": "tajik",
|
85 |
+
"sd": "sindhi",
|
86 |
+
"gu": "gujarati",
|
87 |
+
"am": "amharic",
|
88 |
+
"yi": "yiddish",
|
89 |
+
"lo": "lao",
|
90 |
+
"uz": "uzbek",
|
91 |
+
"fo": "faroese",
|
92 |
+
"ht": "haitian creole",
|
93 |
+
"ps": "pashto",
|
94 |
+
"tk": "turkmen",
|
95 |
+
"nn": "nynorsk",
|
96 |
+
"mt": "maltese",
|
97 |
+
"sa": "sanskrit",
|
98 |
+
"lb": "luxembourgish",
|
99 |
+
"my": "myanmar",
|
100 |
+
"bo": "tibetan",
|
101 |
+
"tl": "tagalog",
|
102 |
+
"mg": "malagasy",
|
103 |
+
"as": "assamese",
|
104 |
+
"tt": "tatar",
|
105 |
+
"haw": "hawaiian",
|
106 |
+
"ln": "lingala",
|
107 |
+
"ha": "hausa",
|
108 |
+
"ba": "bashkir",
|
109 |
+
"jw": "javanese",
|
110 |
+
"su": "sundanese",
|
111 |
+
"yue": "cantonese",
|
112 |
+
"minnan": "minnan",
|
113 |
+
"wuyu": "wuyu",
|
114 |
+
"dialect": "dialect",
|
115 |
+
"zh/en": "zh/en",
|
116 |
+
"en/zh": "en/zh",
|
117 |
+
}
|
118 |
+
|
119 |
+
# language code lookup by name, with a few language aliases
|
120 |
+
TO_LANGUAGE_CODE = {
|
121 |
+
**{language: code for code, language in LANGUAGES.items()},
|
122 |
+
"burmese": "my",
|
123 |
+
"valencian": "ca",
|
124 |
+
"flemish": "nl",
|
125 |
+
"haitian": "ht",
|
126 |
+
"letzeburgesch": "lb",
|
127 |
+
"pushto": "ps",
|
128 |
+
"panjabi": "pa",
|
129 |
+
"moldavian": "ro",
|
130 |
+
"moldovan": "ro",
|
131 |
+
"sinhalese": "si",
|
132 |
+
"castilian": "es",
|
133 |
+
"mandarin": "zh",
|
134 |
+
}
|
135 |
+
|
136 |
+
AUDIO_EVENT = {
|
137 |
+
"ASR": "ASR",
|
138 |
+
"AED": "AED",
|
139 |
+
"SER": "SER",
|
140 |
+
"Speech": "Speech",
|
141 |
+
"/Speech": "/Speech",
|
142 |
+
"BGM": "BGM",
|
143 |
+
"/BGM": "/BGM",
|
144 |
+
"Laughter": "Laughter",
|
145 |
+
"/Laughter": "/Laughter",
|
146 |
+
"Applause": "Applause",
|
147 |
+
"/Applause": "/Applause",
|
148 |
+
}
|
149 |
+
|
150 |
+
EMOTION = {
|
151 |
+
"HAPPY": "HAPPY",
|
152 |
+
"SAD": "SAD",
|
153 |
+
"ANGRY": "ANGRY",
|
154 |
+
"NEUTRAL": "NEUTRAL",
|
155 |
+
}
|
156 |
+
|
157 |
+
TTS_Vocal_Token = {
|
158 |
+
"TTS/B": "TTS/B",
|
159 |
+
"TTS/O": "TTS/O",
|
160 |
+
"TTS/Q": "TTS/Q",
|
161 |
+
"TTS/A": "TTS/A",
|
162 |
+
"TTS/CO": "TTS/CO",
|
163 |
+
"TTS/CL": "TTS/CL",
|
164 |
+
"TTS/H": "TTS/H",
|
165 |
+
**{f"TTS/SP{i:02d}": f"TTS/SP{i:02d}" for i in range(1, 14)}
|
166 |
+
}
|
167 |
+
|
168 |
+
|
169 |
+
@lru_cache(maxsize=None)
|
170 |
+
def get_encoding(name: str = "gpt2", num_languages: int = 99):
|
171 |
+
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
|
172 |
+
ranks = {
|
173 |
+
base64.b64decode(token): int(rank)
|
174 |
+
for token, rank in (line.split() for line in open(vocab_path) if line)
|
175 |
+
}
|
176 |
+
n_vocab = len(ranks)
|
177 |
+
special_tokens = {}
|
178 |
+
|
179 |
+
specials = [
|
180 |
+
"<|endoftext|>",
|
181 |
+
"<|startoftranscript|>",
|
182 |
+
*[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]],
|
183 |
+
*[f"<|{audio_event}|>" for audio_event in list(AUDIO_EVENT.keys())],
|
184 |
+
*[f"<|{emotion}|>" for emotion in list(EMOTION.keys())],
|
185 |
+
"<|translate|>",
|
186 |
+
"<|transcribe|>",
|
187 |
+
"<|startoflm|>",
|
188 |
+
"<|startofprev|>",
|
189 |
+
"<|nospeech|>",
|
190 |
+
"<|notimestamps|>",
|
191 |
+
*[f"<|SPECIAL_TOKEN_{i}|>" for i in range(1, 31)], # register special tokens for ASR
|
192 |
+
*[f"<|{tts}|>" for tts in list(TTS_Vocal_Token.keys())], # register special tokens for TTS
|
193 |
+
*[f"<|{i * 0.02:.2f}|>" for i in range(1501)],
|
194 |
+
]
|
195 |
+
|
196 |
+
for token in specials:
|
197 |
+
special_tokens[token] = n_vocab
|
198 |
+
n_vocab += 1
|
199 |
+
|
200 |
+
return tiktoken.Encoding(
|
201 |
+
name=os.path.basename(vocab_path),
|
202 |
+
explicit_n_vocab=n_vocab,
|
203 |
+
pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""",
|
204 |
+
mergeable_ranks=ranks,
|
205 |
+
special_tokens=special_tokens,
|
206 |
+
)
|
207 |
+
|
208 |
+
|
209 |
+
@lru_cache(maxsize=None)
|
210 |
+
def get_tokenizer(
|
211 |
+
multilingual: bool,
|
212 |
+
*,
|
213 |
+
num_languages: int = 99,
|
214 |
+
language: Optional[str] = None,
|
215 |
+
task: Optional[str] = None, # Literal["transcribe", "translate", None]
|
216 |
+
) -> Tokenizer:
|
217 |
+
if language is not None:
|
218 |
+
language = language.lower()
|
219 |
+
if language not in LANGUAGES:
|
220 |
+
if language in TO_LANGUAGE_CODE:
|
221 |
+
language = TO_LANGUAGE_CODE[language]
|
222 |
+
else:
|
223 |
+
raise ValueError(f"Unsupported language: {language}")
|
224 |
+
|
225 |
+
if multilingual:
|
226 |
+
encoding_name = "multilingual_zh_ja_yue_char_del"
|
227 |
+
language = language or "en"
|
228 |
+
task = task or "transcribe"
|
229 |
+
else:
|
230 |
+
encoding_name = "gpt2"
|
231 |
+
language = None
|
232 |
+
task = None
|
233 |
+
|
234 |
+
encoding = get_encoding(name=encoding_name, num_languages=num_languages)
|
235 |
+
|
236 |
+
return Tokenizer(
|
237 |
+
encoding=encoding, num_languages=num_languages, language=language, task=task
|
238 |
+
)
|
239 |
+
|
240 |
+
|
241 |
+
class QwenTokenizer():
|
242 |
+
def __init__(self, token_path, skip_special_tokens=True):
|
243 |
+
super().__init__()
|
244 |
+
# NOTE: non-chat model, all these special tokens keep randomly initialized.
|
245 |
+
special_tokens = {
|
246 |
+
'eos_token': '<|endoftext|>',
|
247 |
+
'pad_token': '<|endoftext|>',
|
248 |
+
'additional_special_tokens': [
|
249 |
+
'<|im_start|>', '<|im_end|>', '<|endofprompt|>',
|
250 |
+
'[breath]', '<strong>', '</strong>', '[noise]',
|
251 |
+
'[laughter]', '[cough]', '[clucking]', '[accent]',
|
252 |
+
'[quick_breath]',
|
253 |
+
"<laughter>", "</laughter>",
|
254 |
+
"[hissing]", "[sigh]", "[vocalized-noise]",
|
255 |
+
"[lipsmack]", "[mn]"
|
256 |
+
]
|
257 |
+
}
|
258 |
+
self.special_tokens = special_tokens
|
259 |
+
self.tokenizer = AutoTokenizer.from_pretrained(token_path)
|
260 |
+
self.tokenizer.add_special_tokens(special_tokens)
|
261 |
+
self.skip_special_tokens = skip_special_tokens
|
262 |
+
|
263 |
+
def encode(self, text, **kwargs):
|
264 |
+
tokens = self.tokenizer([text], return_tensors="pt")
|
265 |
+
tokens = tokens["input_ids"][0].cpu().tolist()
|
266 |
+
return tokens
|
267 |
+
|
268 |
+
def decode(self, tokens):
|
269 |
+
tokens = torch.tensor(tokens, dtype=torch.int64)
|
270 |
+
text = self.tokenizer.batch_decode([tokens], skip_special_tokens=self.skip_special_tokens)[0]
|
271 |
+
return text
|
272 |
+
|
273 |
+
|
274 |
+
@lru_cache(maxsize=None)
|
275 |
+
def get_qwen_tokenizer(
|
276 |
+
token_path: str,
|
277 |
+
skip_special_tokens: bool
|
278 |
+
) -> QwenTokenizer:
|
279 |
+
return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)
|
cosyvoice/transformer/__init__.py
ADDED
File without changes
|
cosyvoice/transformer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (164 Bytes). View file
|
|
cosyvoice/transformer/__pycache__/activation.cpython-310.pyc
ADDED
Binary file (2.49 kB). View file
|
|