ASaboor commited on
Commit
1acc131
·
verified ·
1 Parent(s): 8ae27d9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -6
app.py CHANGED
@@ -1,9 +1,30 @@
1
  import streamlit as st
2
- from transformers import pipeline
3
 
4
- pipe = pipeline('sentiment-analysis')
5
- text = st.text_area('Enter some text!')
 
 
6
 
7
- if text:
8
- out = pipe(text)
9
- st.json(out)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
3
 
4
+ # Load pre-trained model and tokenizer
5
+ model_name = "gpt2"
6
+ model = GPT2LMHeadModel.from_pretrained(model_name)
7
+ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
8
 
9
+ def generate_blog_post(topic, max_length=500):
10
+ # Encode the input text
11
+ input_ids = tokenizer.encode(topic, return_tensors='pt')
12
+
13
+ # Generate text
14
+ outputs = model.generate(input_ids, max_length=max_length, num_return_sequences=1)
15
+
16
+ # Decode the generated text
17
+ text = tokenizer.decode(outputs[0], skip_special_tokens=True)
18
+ return text
19
+
20
+ # Streamlit app
21
+ st.title("Blog Post Generator")
22
+ st.write("Enter a topic, and the model will generate a blog post for you.")
23
+
24
+ topic = st.text_input("Topic", value="Artificial Intelligence")
25
+ max_length = st.slider("Max Length", min_value=50, max_value=1000, value=500)
26
+
27
+ if st.button("Generate Blog Post"):
28
+ with st.spinner("Generating..."):
29
+ blog_post = generate_blog_post(topic, max_length)
30
+ st.write(blog_post)