Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,30 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
|
4 |
+
# Load pre-trained model and tokenizer
|
5 |
+
model_name = "gpt2"
|
6 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
7 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
8 |
|
9 |
+
def generate_blog_post(topic, max_length=500):
|
10 |
+
# Encode the input text
|
11 |
+
input_ids = tokenizer.encode(topic, return_tensors='pt')
|
12 |
+
|
13 |
+
# Generate text
|
14 |
+
outputs = model.generate(input_ids, max_length=max_length, num_return_sequences=1)
|
15 |
+
|
16 |
+
# Decode the generated text
|
17 |
+
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
18 |
+
return text
|
19 |
+
|
20 |
+
# Streamlit app
|
21 |
+
st.title("Blog Post Generator")
|
22 |
+
st.write("Enter a topic, and the model will generate a blog post for you.")
|
23 |
+
|
24 |
+
topic = st.text_input("Topic", value="Artificial Intelligence")
|
25 |
+
max_length = st.slider("Max Length", min_value=50, max_value=1000, value=500)
|
26 |
+
|
27 |
+
if st.button("Generate Blog Post"):
|
28 |
+
with st.spinner("Generating..."):
|
29 |
+
blog_post = generate_blog_post(topic, max_length)
|
30 |
+
st.write(blog_post)
|