import streamlit as st from transformers import GPT2LMHeadModel, GPT2Tokenizer # Load pre-trained model and tokenizer model_name = "gpt2" model = GPT2LMHeadModel.from_pretrained(model_name) tokenizer = GPT2Tokenizer.from_pretrained(model_name) def generate_blog_post(topic, max_length=500): # Encode the input text input_ids = tokenizer.encode(topic, return_tensors='pt') # Generate text outputs = model.generate(input_ids, max_length=max_length, num_return_sequences=1) # Decode the generated text text = tokenizer.decode(outputs[0], skip_special_tokens=True) return text # Streamlit app st.title("Blog Post Generator") st.write("Enter a topic, and the model will generate a blog post for you.") topic = st.text_input("Topic", value="Artificial Intelligence") max_length = st.slider("Max Length", min_value=50, max_value=1000, value=500) if st.button("Generate Blog Post"): with st.spinner("Generating..."): blog_post = generate_blog_post(topic, max_length) st.write(blog_post)