Jhfhnrqgx-Gxeelqj-Vwxglr / inference.py
ASesYusuf1's picture
Upload 102 files
c1683bf verified
raw
history blame
8.62 kB
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import argparse
import time
import librosa
from tqdm.auto import tqdm
import sys
import os
import glob
import torch
import soundfile as sf
import torch.nn as nn
import numpy as np
from assets.i18n.i18n import I18nAuto
# Colab kontrolü
try:
from google.colab import drive
IS_COLAB = True
except ImportError:
IS_COLAB = False
i18n = I18nAuto()
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
from utils import demix, get_model_from_config, normalize_audio, denormalize_audio
from utils import prefer_target_instrument, apply_tta, load_start_checkpoint, load_lora_weights
import warnings
warnings.filterwarnings("ignore")
def shorten_filename(filename, max_length=30):
"""Dosya adını belirtilen maksimum uzunluğa kısaltır."""
base, ext = os.path.splitext(filename)
if len(base) <= max_length:
return filename
shortened = base[:15] + "..." + base[-10:] + ext
return shortened
def get_soundfile_subtype(pcm_type, is_float=False):
"""PCM türüne göre uygun soundfile alt türünü belirler."""
if is_float:
return 'FLOAT'
subtype_map = {
'PCM_16': 'PCM_16',
'PCM_24': 'PCM_24',
'FLOAT': 'FLOAT'
}
return subtype_map.get(pcm_type, 'FLOAT')
def run_folder(model, args, config, device, verbose: bool = False):
start_time = time.time()
model.eval()
mixture_paths = sorted(glob.glob(os.path.join(args.input_folder, '*.*')))
sample_rate = getattr(config.audio, 'sample_rate', 44100)
print(i18n("total_files_found").format(len(mixture_paths), sample_rate))
instruments = prefer_target_instrument(config)[:]
# Çıktı klasörünü kullan (processing.py tarafından ayarlandı)
store_dir = args.store_dir
os.makedirs(store_dir, exist_ok=True)
if not verbose:
mixture_paths = tqdm(mixture_paths, desc=i18n("total_progress"))
else:
mixture_paths = mixture_paths
detailed_pbar = not args.disable_detailed_pbar
print(i18n("detailed_pbar_enabled").format(detailed_pbar))
for path in mixture_paths:
try:
mix, sr = librosa.load(path, sr=sample_rate, mono=False)
print(i18n("loaded_audio").format(path, mix.shape))
except Exception as e:
print(i18n("cannot_read_track").format(path))
print(i18n("error_message").format(str(e)))
continue
mix_orig = mix.copy()
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
mix, norm_params = normalize_audio(mix)
waveforms_orig = demix(config, model, mix, device, model_type=args.model_type, pbar=detailed_pbar)
if args.use_tta:
waveforms_orig = apply_tta(config, model, mix, waveforms_orig, device, args.model_type)
if args.demud_phaseremix_inst:
print(i18n("demudding_track").format(path))
instr = 'vocals' if 'vocals' in instruments else instruments[0]
instruments.append('instrumental_phaseremix')
if 'instrumental' not in instruments and 'Instrumental' not in instruments:
mix_modified = mix_orig - 2*waveforms_orig[instr]
mix_modified_ = mix_modified.copy()
waveforms_modified = demix(config, model, mix_modified, device, model_type=args.model_type, pbar=detailed_pbar)
if args.use_tta:
waveforms_modified = apply_tta(config, model, mix_modified, waveforms_modified, device, args.model_type)
waveforms_orig['instrumental_phaseremix'] = mix_orig + waveforms_modified[instr]
else:
mix_modified = 2*waveforms_orig[instr] - mix_orig
mix_modified_ = mix_modified.copy()
waveforms_modified = demix(config, model, mix_modified, device, model_type=args.model_type, pbar=detailed_pbar)
if args.use_tta:
waveforms_modified = apply_tta(config, model, mix_modified, waveforms_orig, device, args.model_type)
waveforms_orig['instrumental_phaseremix'] = mix_orig + mix_modified_ - waveforms_modified[instr]
if args.extract_instrumental:
instr = 'vocals' if 'vocals' in instruments else instruments[0]
waveforms_orig['instrumental'] = mix_orig - waveforms_orig[instr]
if 'instrumental' not in instruments:
instruments.append('instrumental')
for instr in instruments:
estimates = waveforms_orig[instr]
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
estimates = denormalize_audio(estimates, norm_params)
is_float = getattr(args, 'export_format', '').startswith('wav FLOAT')
codec = 'flac' if getattr(args, 'flac_file', False) else 'wav'
if codec == 'flac':
subtype = get_soundfile_subtype(args.pcm_type, is_float)
else:
subtype = get_soundfile_subtype('FLOAT', is_float)
shortened_filename = shorten_filename(os.path.basename(path))
output_filename = f"{shortened_filename}_{instr}.{codec}"
output_path = os.path.join(store_dir, output_filename)
sf.write(output_path, estimates.T, sr, subtype=subtype)
print(i18n("elapsed_time").format(time.time() - start_time))
def proc_folder(args):
parser = argparse.ArgumentParser(description=i18n("proc_folder_description"))
parser.add_argument("--model_type", type=str, default='mdx23c', help=i18n("model_type_help"))
parser.add_argument("--config_path", type=str, help=i18n("config_path_help"))
parser.add_argument("--demud_phaseremix_inst", action='store_true', help=i18n("demud_phaseremix_help"))
parser.add_argument("--start_check_point", type=str, default='', help=i18n("start_checkpoint_help"))
parser.add_argument("--input_folder", type=str, help=i18n("input_folder_help"))
parser.add_argument("--audio_path", type=str, help=i18n("audio_path_help"))
parser.add_argument("--store_dir", type=str, default="", help=i18n("store_dir_help"))
parser.add_argument("--device_ids", nargs='+', type=int, default=0, help=i18n("device_ids_help"))
parser.add_argument("--extract_instrumental", action='store_true', help=i18n("extract_instrumental_help"))
parser.add_argument("--disable_detailed_pbar", action='store_true', help=i18n("disable_detailed_pbar_help"))
parser.add_argument("--force_cpu", action='store_true', help=i18n("force_cpu_help"))
parser.add_argument("--flac_file", action='store_true', help=i18n("flac_file_help"))
parser.add_argument("--export_format", type=str, choices=['wav FLOAT', 'flac PCM_16', 'flac PCM_24'], default='flac PCM_24', help=i18n("export_format_help"))
parser.add_argument("--pcm_type", type=str, choices=['PCM_16', 'PCM_24'], default='PCM_24', help=i18n("pcm_type_help"))
parser.add_argument("--use_tta", action='store_true', help=i18n("use_tta_help"))
parser.add_argument("--lora_checkpoint", type=str, default='', help=i18n("lora_checkpoint_help"))
parser.add_argument("--chunk_size", type=int, default=1000000, help="Inference chunk size")
parser.add_argument("--overlap", type=int, default=4, help="Inference overlap factor")
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
device = "cpu"
if args.force_cpu:
device = "cpu"
elif torch.cuda.is_available():
print(i18n("cuda_available"))
device = f'cuda:{args.device_ids[0]}' if type(args.device_ids) == list else f'cuda:{args.device_ids}'
elif torch.backends.mps.is_available():
device = "mps"
print(i18n("using_device").format(device))
model_load_start_time = time.time()
torch.backends.cudnn.benchmark = True
model, config = get_model_from_config(args.model_type, args.config_path)
if args.start_check_point != '':
load_start_checkpoint(args, model, type_='inference')
print(i18n("instruments_print").format(config.training.instruments))
if type(args.device_ids) == list and len(args.device_ids) > 1 and not args.force_cpu:
model = nn.DataParallel(model, device_ids=args.device_ids)
model = model.to(device)
print(i18n("model_load_time").format(time.time() - model_load_start_time))
run_folder(model, args, config, device, verbose=False)
if __name__ == "__main__":
proc_folder(None)