Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torchaudio
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
@@ -9,14 +70,14 @@ import time
|
|
9 |
# Initialize the speech-to-text transcriber
|
10 |
transcriber = pipeline("automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-english")
|
11 |
|
12 |
-
# Load the pre-trained question
|
13 |
model_name = "AVISHKAARAM/avishkaarak-ekta-hindi"
|
14 |
qa_model = pipeline("question-answering", model=model_name)
|
15 |
|
16 |
def answer_question(context, question=None, audio=None):
|
17 |
if audio is not None:
|
18 |
-
text = transcriber(audio)
|
19 |
-
question_text = text
|
20 |
else:
|
21 |
question_text = question
|
22 |
|
@@ -37,23 +98,24 @@ def play_audio(audio_path):
|
|
37 |
time.sleep(0.1)
|
38 |
|
39 |
# Define the Gradio interface
|
40 |
-
context_input = gr.
|
41 |
-
question_input = gr.
|
42 |
-
audio_input = gr.
|
43 |
|
44 |
-
output_text = gr.
|
45 |
-
output_audio = gr.
|
46 |
|
47 |
inter = gr.Interface(
|
48 |
fn=answer_question,
|
49 |
inputs=[context_input, question_input, audio_input],
|
50 |
outputs=[output_text, output_audio],
|
51 |
title="Question Answering",
|
52 |
-
description="Enter a context and a question to get an answer. You can also
|
53 |
examples=[
|
54 |
["The capital of France is Paris.", "What is the capital of France?"],
|
55 |
["OpenAI is famous for developing GPT-3.", "What is OpenAI known for?"],
|
56 |
]
|
57 |
)
|
|
|
58 |
# Launch the Gradio interface
|
59 |
-
inter.launch()
|
|
|
1 |
+
# import torchaudio
|
2 |
+
# import gradio as gr
|
3 |
+
# from transformers import pipeline
|
4 |
+
# from gtts import gTTS
|
5 |
+
# import tempfile
|
6 |
+
# import pygame
|
7 |
+
# import time
|
8 |
+
|
9 |
+
# # Initialize the speech-to-text transcriber
|
10 |
+
# transcriber = pipeline("automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-english")
|
11 |
+
|
12 |
+
# # Load the pre-trained question answering model
|
13 |
+
# model_name = "AVISHKAARAM/avishkaarak-ekta-hindi"
|
14 |
+
# qa_model = pipeline("question-answering", model=model_name)
|
15 |
+
|
16 |
+
# def answer_question(context, question=None, audio=None):
|
17 |
+
# if audio is not None:
|
18 |
+
# text = transcriber(audio)
|
19 |
+
# question_text = text['text']
|
20 |
+
# else:
|
21 |
+
# question_text = question
|
22 |
+
|
23 |
+
# qa_result = qa_model(question=question_text, context=context)
|
24 |
+
# answer = qa_result["answer"]
|
25 |
+
|
26 |
+
# tts = gTTS(text=answer, lang='en')
|
27 |
+
# audio_path = tempfile.NamedTemporaryFile(suffix=".mp3").name
|
28 |
+
# tts.save(audio_path)
|
29 |
+
|
30 |
+
# return answer, audio_path
|
31 |
+
|
32 |
+
# def play_audio(audio_path):
|
33 |
+
# pygame.mixer.init()
|
34 |
+
# pygame.mixer.music.load(audio_path)
|
35 |
+
# pygame.mixer.music.play()
|
36 |
+
# while pygame.mixer.music.get_busy():
|
37 |
+
# time.sleep(0.1)
|
38 |
+
|
39 |
+
# # Define the Gradio interface
|
40 |
+
# context_input = gr.components.Textbox(label="Context")
|
41 |
+
# question_input = gr.components.Textbox(label="Question")
|
42 |
+
# audio_input = gr.components.Audio(source="microphone", type="filepath")
|
43 |
+
|
44 |
+
# output_text = gr.components.Textbox(label="Answer")
|
45 |
+
# output_audio = gr.components.Audio(label="Answer Audio", type="numpy")
|
46 |
+
|
47 |
+
# inter = gr.Interface(
|
48 |
+
# fn=answer_question,
|
49 |
+
# inputs=[context_input, question_input, audio_input],
|
50 |
+
# outputs=[output_text, output_audio],
|
51 |
+
# title="Question Answering",
|
52 |
+
# description="Enter a context and a question to get an answer. You can also upload an audio file with the question.",
|
53 |
+
# examples=[
|
54 |
+
# ["The capital of France is Paris.", "What is the capital of France?"],
|
55 |
+
# ["OpenAI is famous for developing GPT-3.", "What is OpenAI known for?"],
|
56 |
+
# ]
|
57 |
+
# )
|
58 |
+
# # Launch the Gradio interface
|
59 |
+
# inter.launch()
|
60 |
+
|
61 |
+
|
62 |
import torchaudio
|
63 |
import gradio as gr
|
64 |
from transformers import pipeline
|
|
|
70 |
# Initialize the speech-to-text transcriber
|
71 |
transcriber = pipeline("automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-english")
|
72 |
|
73 |
+
# Load the pre-trained question-answering model
|
74 |
model_name = "AVISHKAARAM/avishkaarak-ekta-hindi"
|
75 |
qa_model = pipeline("question-answering", model=model_name)
|
76 |
|
77 |
def answer_question(context, question=None, audio=None):
|
78 |
if audio is not None:
|
79 |
+
text = transcriber(audio)["text"]
|
80 |
+
question_text = text
|
81 |
else:
|
82 |
question_text = question
|
83 |
|
|
|
98 |
time.sleep(0.1)
|
99 |
|
100 |
# Define the Gradio interface
|
101 |
+
context_input = gr.Textbox(label="Context")
|
102 |
+
question_input = gr.Textbox(label="Question")
|
103 |
+
audio_input = gr.Audio(type="filepath", label="Question Audio")
|
104 |
|
105 |
+
output_text = gr.Textbox(label="Answer")
|
106 |
+
output_audio = gr.Audio(label="Answer Audio")
|
107 |
|
108 |
inter = gr.Interface(
|
109 |
fn=answer_question,
|
110 |
inputs=[context_input, question_input, audio_input],
|
111 |
outputs=[output_text, output_audio],
|
112 |
title="Question Answering",
|
113 |
+
description="Enter a context and a question to get an answer. You can also record audio with the question.",
|
114 |
examples=[
|
115 |
["The capital of France is Paris.", "What is the capital of France?"],
|
116 |
["OpenAI is famous for developing GPT-3.", "What is OpenAI known for?"],
|
117 |
]
|
118 |
)
|
119 |
+
|
120 |
# Launch the Gradio interface
|
121 |
+
inter.launch()
|