Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,121 +1,4 @@
|
|
| 1 |
|
| 2 |
-
# import gradio as gr
|
| 3 |
-
|
| 4 |
-
# # Use a pipeline as a high-level helper
|
| 5 |
-
# from transformers import pipeline
|
| 6 |
-
|
| 7 |
-
# # Use a pipeline as a high-level helper
|
| 8 |
-
# # Load model directly
|
| 9 |
-
# from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 10 |
-
|
| 11 |
-
# # processor = AutoImageProcessor.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
| 12 |
-
# # model = AutoModelForImageClassification.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
| 13 |
-
# pipe = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
# # $ pip install gradio_client fastapi uvicorn
|
| 17 |
-
|
| 18 |
-
# import requests
|
| 19 |
-
# from PIL import Image
|
| 20 |
-
# from transformers import pipeline
|
| 21 |
-
# import io
|
| 22 |
-
# import base64
|
| 23 |
-
|
| 24 |
-
# Initialize the pipeline
|
| 25 |
-
# pipe = pipeline('image-classification')
|
| 26 |
-
|
| 27 |
-
# def load_image_from_path(image_path):
|
| 28 |
-
# return Image.open(image_path)
|
| 29 |
-
|
| 30 |
-
# def load_image_from_url(image_url):
|
| 31 |
-
# response = requests.get(image_url)
|
| 32 |
-
# return Image.open(io.BytesIO(response.content))
|
| 33 |
-
|
| 34 |
-
# def load_image_from_base64(base64_string):
|
| 35 |
-
# image_data = base64.b64decode(base64_string)
|
| 36 |
-
# return Image.open(io.BytesIO(image_data))
|
| 37 |
-
|
| 38 |
-
# def predict(image_input):
|
| 39 |
-
# if isinstance(image_input, str):
|
| 40 |
-
# if image_input.startswith('http'):
|
| 41 |
-
# image = load_image_from_url(image_input)
|
| 42 |
-
# elif image_input.startswith('/'):
|
| 43 |
-
# image = load_image_from_path(image_input)
|
| 44 |
-
# else:
|
| 45 |
-
# image = load_image_from_base64(image_input)
|
| 46 |
-
# elif isinstance(image_input, Image.Image):
|
| 47 |
-
# image = image_input
|
| 48 |
-
# else:
|
| 49 |
-
# raise ValueError("Incorrect format used for image. Should be an URL linking to an image, a base64 string, a local path, or a PIL image.")
|
| 50 |
-
|
| 51 |
-
# return pipe(image)
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
# def predict(image):
|
| 55 |
-
# return pipe(image)
|
| 56 |
-
|
| 57 |
-
# def main():
|
| 58 |
-
# # image_input = 'path_or_url_or_base64' # Update with actual input
|
| 59 |
-
# # output = predict(image_input)
|
| 60 |
-
# # print(output)
|
| 61 |
-
|
| 62 |
-
# demo = gr.Interface(
|
| 63 |
-
# fn=predict,
|
| 64 |
-
# inputs='image',
|
| 65 |
-
# outputs='text',
|
| 66 |
-
# )
|
| 67 |
-
|
| 68 |
-
# demo.launch()
|
| 69 |
-
|
| 70 |
-
# import requests
|
| 71 |
-
# import torch
|
| 72 |
-
# from PIL import Image
|
| 73 |
-
# from torchvision import transforms
|
| 74 |
-
|
| 75 |
-
# def predict(inp):
|
| 76 |
-
# inp = Image.fromarray(inp.astype("uint8"), "RGB")
|
| 77 |
-
# inp = transforms.ToTensor()(inp).unsqueeze(0)
|
| 78 |
-
# with torch.no_grad():
|
| 79 |
-
# prediction = torch.nn.functional.softmax(model(inp.to(device))[0], dim=0)
|
| 80 |
-
# return {labels[i]: float(prediction[i]) for i in range(1000)}
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
# inputs = gr.Image()
|
| 84 |
-
# outputs = gr.Label(num_top_classes=2)
|
| 85 |
-
|
| 86 |
-
# io = gr.Interface(
|
| 87 |
-
# fn=predict, inputs=inputs, outputs=outputs, examples=["dog.jpg"]
|
| 88 |
-
# )
|
| 89 |
-
# io.launch(inline=False, share=True)
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
# import gradio as gr
|
| 98 |
-
# from transformers import pipeline
|
| 99 |
-
|
| 100 |
-
# pipeline = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
| 101 |
-
|
| 102 |
-
# def predict(image):
|
| 103 |
-
# predictions = pipeline(image)
|
| 104 |
-
# return {p["label"]: p["score"] for p in predictions}
|
| 105 |
-
|
| 106 |
-
# gr.Interface(
|
| 107 |
-
# predict,
|
| 108 |
-
# inputs=gr.inputs.Image(label="Upload Image", type="filepath"),
|
| 109 |
-
# outputs=gr.outputs.Label(num_top_classes=2),
|
| 110 |
-
# title="AI Generated? Or Not?",
|
| 111 |
-
# allow_flagging="manual"
|
| 112 |
-
# ).launch()
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
# if __name__ == "__main__":
|
| 117 |
-
# main()
|
| 118 |
-
|
| 119 |
import gradio as gr
|
| 120 |
from transformers import pipeline
|
| 121 |
|
|
@@ -127,9 +10,9 @@ def predict(input_img):
|
|
| 127 |
|
| 128 |
gradio_app = gr.Interface(
|
| 129 |
predict,
|
| 130 |
-
inputs=gr.Image(label="Select
|
| 131 |
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
| 132 |
-
title="
|
| 133 |
)
|
| 134 |
|
| 135 |
if __name__ == "__main__":
|
|
|
|
| 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import pipeline
|
| 4 |
|
|
|
|
| 10 |
|
| 11 |
gradio_app = gr.Interface(
|
| 12 |
predict,
|
| 13 |
+
inputs=gr.Image(label="Select Image", sources=['upload', 'webcam'], type="pil"),
|
| 14 |
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
| 15 |
+
title="AI Generated? Or Not?",
|
| 16 |
)
|
| 17 |
|
| 18 |
if __name__ == "__main__":
|