Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
|
| 3 |
+
# def greet(name):
|
| 4 |
+
# return "Hello " + name + "!!"
|
| 5 |
+
|
| 6 |
+
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
+
# demo.launch()
|
| 8 |
+
|
| 9 |
+
|
| 10 |
import gradio as gr
|
| 11 |
+
import requests
|
| 12 |
+
import torch
|
| 13 |
+
from PIL import Image
|
| 14 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
| 15 |
+
|
| 16 |
+
# Load the Llama 3.2 Vision Model
|
| 17 |
+
def load_llama_model():
|
| 18 |
+
model_id = "meta-llama/Llama-3.2-11B-Vision"
|
| 19 |
+
|
| 20 |
+
# Load model and processor
|
| 21 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
| 22 |
+
model_id,
|
| 23 |
+
torch_dtype=torch.bfloat16,
|
| 24 |
+
device_map="auto",
|
| 25 |
+
)
|
| 26 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 27 |
+
|
| 28 |
+
return model, processor
|
| 29 |
+
|
| 30 |
+
# Function to generate predictions for text and image
|
| 31 |
+
def process_input(text, image=None):
|
| 32 |
+
model, processor = load_llama_model()
|
| 33 |
+
|
| 34 |
+
if image:
|
| 35 |
+
# If an image is uploaded, process it as a PIL Image object
|
| 36 |
+
vision_input = image.convert("RGB").resize((224, 224))
|
| 37 |
+
|
| 38 |
+
prompt = f"<|image|><|begin_of_text|>{text}"
|
| 39 |
+
|
| 40 |
+
# Process image and text together
|
| 41 |
+
inputs = processor(vision_input, prompt, return_tensors="pt").to(model.device)
|
| 42 |
+
else:
|
| 43 |
+
# If no image is uploaded, just process the text
|
| 44 |
+
prompt = f"<|begin_of_text|>{text}"
|
| 45 |
+
inputs = processor(prompt, return_tensors="pt").to(model.device)
|
| 46 |
+
|
| 47 |
+
# Generate output from the model
|
| 48 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 49 |
+
|
| 50 |
+
# Decode the output to return a readable text
|
| 51 |
+
decoded_output = processor.decode(outputs[0], skip_special_tokens=True)
|
| 52 |
+
|
| 53 |
+
return decoded_output
|
| 54 |
+
|
| 55 |
+
# Gradio Interface Setup
|
| 56 |
+
def demo():
|
| 57 |
+
# Define Gradio input and output components
|
| 58 |
+
text_input = gr.Textbox(label="Text Input", placeholder="Enter text here", lines=5)
|
| 59 |
+
|
| 60 |
+
# Use type="pil" to work with PIL Image objects
|
| 61 |
+
image_input = gr.Image(label="Upload an Image", type="pil")
|
| 62 |
+
|
| 63 |
+
output = gr.Textbox(label="Model Output", lines=5)
|
| 64 |
+
|
| 65 |
+
# Define the interface layout
|
| 66 |
+
interface = gr.Interface(
|
| 67 |
+
fn=process_input,
|
| 68 |
+
inputs=[text_input, image_input],
|
| 69 |
+
outputs=output,
|
| 70 |
+
title="Llama 3.2 Multimodal Text-Image Analyzer",
|
| 71 |
+
description="Upload an image and/or provide text for analysis using the Llama 3.2 Vision Model."
|
| 72 |
+
)
|
| 73 |
|
| 74 |
+
# Launch the demo
|
| 75 |
+
interface.launch()
|
| 76 |
|
| 77 |
+
# Run the demo
|
| 78 |
+
if __name__ == "__main__":
|
| 79 |
+
demo()
|