import os import tensorflow as tf import gradio as gr import numpy as np loaded_model = tf.keras.saving.load_model('./model/linear_regressor.keras') def test_ml_model(input): result = loaded_model.predict(([input])) return (f'predicted: {result}') demo = gr.Interface(fn=test_ml_model, inputs=gr.Slider(0, 100, step=1), outputs="text", description="A sample linear regressor solution.", title='Synthetic Data Linear Regressor Solution') demo.launch()