Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,406 Bytes
ae231bc 3a8756f ae231bc f7e1fb5 6228595 9dc2118 f7e1fb5 ae231bc 5c9afc5 ae231bc 02fd900 ae231bc 5c9afc5 9dc2118 6228595 5c9afc5 bbabb73 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 3a8756f 6228595 ae231bc 6228595 ae231bc 6228595 5c9afc5 6228595 5c9afc5 6228595 ae231bc 6228595 a2f6c58 ae231bc 6228595 ae231bc 2e87c77 d76bf3e 2e87c77 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 7779abb ae231bc 6228595 d76bf3e 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 5c9afc5 6228595 ae231bc 6228595 5c9afc5 6228595 9dc2118 6228595 5c9afc5 6228595 5c9afc5 6228595 5c9afc5 6228595 f7e1fb5 5c9afc5 6228595 9dc2118 6228595 f7e1fb5 6228595 9dc2118 6228595 5c9afc5 f7e1fb5 9dc2118 f7e1fb5 6228595 f7e1fb5 ae231bc 6228595 3a8756f 6228595 5c9afc5 6228595 ae231bc 6228595 5c9afc5 6228595 5c9afc5 6228595 5c9afc5 3a8756f 5c9afc5 3a8756f 6228595 5c9afc5 6228595 ae231bc 6228595 5c9afc5 6228595 5c9afc5 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 3d65633 6228595 9dc2118 3d65633 6228595 ae231bc 6228595 5c9afc5 9dc2118 ae231bc 6228595 ae231bc 6228595 5c9afc5 ae231bc 6228595 ae231bc 5c9afc5 6228595 5c9afc5 6228595 ae231bc 5c9afc5 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 9dc2118 6228595 ae231bc 6228595 ae231bc 6228595 7779abb 6228595 7779abb 6228595 7779abb 5c9afc5 6228595 5c9afc5 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ed0198d 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 5c9afc5 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 6228595 ae231bc 5c9afc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 |
"""
Mirel Harmony Inference β HF Space (Gradio)
ZeroGPU-ready, Harmony formatting, bf16 mode for GPT-OSS-20B
Proper LoRA adapter loading (MX format not available in stable releases)
Single file: app.py
"""
from __future__ import annotations
# ===== MAIN IMPORTS =====
import os, gc, json, warnings, traceback
import subprocess, sys
from dataclasses import dataclass
from typing import List, Dict, Optional, Any, Union
from datetime import datetime
import gradio as gr
import spaces # required for ZeroGPU
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import numpy as np
# IMPORTANT: Don't import torch at module level for ZeroGPU
# It will be imported inside GPU-decorated functions
# Suppress warnings
warnings.filterwarnings("ignore", message=".*microscaling.*")
warnings.filterwarnings("ignore", message=".*mx.*")
# Import Harmony components
try:
from openai_harmony import (
Author,
Conversation,
HarmonyEncodingName,
Message,
Role,
SystemContent,
DeveloperContent,
load_harmony_encoding,
ReasoningEffort
)
HARMONY_AVAILABLE = True
print("β OpenAI Harmony loaded successfully")
except ImportError:
print("β openai_harmony not installed. Install with: pip install openai-harmony")
HARMONY_AVAILABLE = False
# Import PEFT for LoRA support
try:
from peft import PeftModel, PeftConfig, LoraConfig, get_peft_model
_HAS_PEFT = True
print("β PEFT loaded successfully")
except Exception:
_HAS_PEFT = False
print("β PEFT not available. Install with: pip install peft")
# Note: MX format requires unreleased Triton features
# We'll use bf16 mode which works fine for inference
_HAS_TRITON_KERNELS = False
USE_MX_FORMAT = False
print("Note: Using bf16 mode (MX format requires unreleased Triton features)")
print("This will work fine but use more memory than native MX format")
# ===== CONFIGURATION =====
MODEL_ID = os.getenv("MODEL_ID", "openai/gpt-oss-20b")
ADAPTER_ID = os.getenv("ADAPTER_ID", "AbstractPhil/mirel-gpt-oss-20b")
ADAPTER_SUBFOLDER = os.getenv("ADAPTER_SUBFOLDER", "checkpoints/checkpoint-516")
ATTN_IMPL = os.getenv("ATTN_IMPL", "eager")
SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT", "You are Mirel, a memory-stable symbolic assistant.")
MAX_NEW_TOKENS = int(os.getenv("MAX_NEW_TOKENS", "512"))
ZEROGPU = os.getenv("ZEROGPU", os.getenv("ZERO_GPU", "1")) == "1"
MERGE_ADAPTER = os.getenv("MERGE_ADAPTER", "0") == "1"
# Detect if using GPT-OSS model
IS_GPT_OSS = "gpt-oss" in MODEL_ID.lower()
USE_MX_FORMAT = IS_GPT_OSS and _HAS_TRITON_KERNELS
# Harmony channels for chain-of-thought
REQUIRED_CHANNELS = ["analysis", "commentary", "final"]
# HF Authentication
HF_TOKEN = (
os.getenv("HF_TOKEN")
or os.getenv("HUGGING_FACE_HUB_TOKEN")
or os.getenv("HUGGINGFACEHUB_API_TOKEN")
or os.getenv("HF_ACCESS_TOKEN")
)
def _hf_login():
"""Login to HuggingFace Hub."""
if HF_TOKEN:
try:
from huggingface_hub import login, whoami
login(token=HF_TOKEN, add_to_git_credential=True)
try:
user = whoami(token=HF_TOKEN)
print(f"β Logged in as: {user.get('name', user.get('id', 'unknown'))}")
except:
print("β HF login successful")
except Exception as e:
print(f"β HF login failed: {e}")
else:
print("β No HF_TOKEN found in environment")
# Login before loading models
_hf_login()
# Disable tokenizer parallelism warning
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# ===== LOAD TOKENIZER =====
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN)
print(f"β Tokenizer loaded from {MODEL_ID}")
except Exception as e:
print(f"β Failed to load tokenizer: {e}")
raise
# ===== HARMONY SETUP =====
if HARMONY_AVAILABLE:
harmony_encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
HARMONY_STOP_IDS = harmony_encoding.stop_tokens_for_assistant_actions()
else:
harmony_encoding = None
HARMONY_STOP_IDS = []
# ===== MODEL LOADING WITH MX FORMAT SUPPORT =====
def detect_mx_format(model) -> bool:
"""Check if model is using native MX format."""
if not hasattr(model, 'model') or not hasattr(model.model, 'layers'):
return False
try:
first_layer = model.model.layers[0]
if hasattr(first_layer, 'block_sparse_moe'):
expert = first_layer.block_sparse_moe.experts[0]
if hasattr(expert, 'w1'):
# Check for MX format scale tensors
return hasattr(expert.w1, 'scales')
except:
pass
return False
def load_base_model(device_map: Optional[str] = "auto") -> AutoModelForCausalLM:
"""Load the base model with proper MX format handling."""
import torch # Import torch here for ZeroGPU compatibility
print(f"\n{'='*50}")
print(f"Loading model: {MODEL_ID}")
print(f"MX Format Available: {_HAS_TRITON_KERNELS}")
print(f"{'='*50}\n")
# Load config to check model type
config = AutoConfig.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN)
# Build loading kwargs
load_kwargs = {
"trust_remote_code": True,
"device_map": device_map,
"low_cpu_mem_usage": True,
"token": HF_TOKEN,
"attn_implementation": ATTN_IMPL if device_map != "cpu" else "eager",
}
if IS_GPT_OSS:
if _HAS_TRITON_KERNELS:
print("β Loading with native MX format support")
# For MX format, let the model handle its own dtype
load_kwargs["torch_dtype"] = "auto"
# Set environment variable to ensure MX is used
import os
os.environ["FORCE_MX_QUANTIZATION"] = "1"
else:
print("β No triton_kernels - falling back to bf16 (dequantized)")
print(" This will likely cause LoRA compatibility issues!")
# Load the model - torch imported inside function
import torch
load_kwargs["torch_dtype"] = torch.bfloat16
# Explicitly disable MX
import os
os.environ["FORCE_MX_QUANTIZATION"] = "0"
else:
# Non-GPT-OSS models
import torch
load_kwargs["torch_dtype"] = torch.bfloat16
try:
# Load the model
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **load_kwargs)
# Verify format
print(f"Model loaded - dtype: {next(model.parameters()).dtype}")
if IS_GPT_OSS:
is_mx = detect_mx_format(model)
if is_mx:
print("β Confirmed: Using native MX format")
else:
print("β Model dequantized to bf16 - LoRA may fail")
# Set model config
if getattr(model.config, "pad_token_id", None) is None:
model.config.pad_token_id = tokenizer.pad_token_id or tokenizer.eos_token_id
model.config.use_cache = True
return model
except Exception as e:
if "ragged_tma" in str(e):
print("\n" + "="*60)
print("ERROR: Triton version incompatibility detected!")
print("The model requires a specific Triton version with ragged_tma support.")
print("\nTo fix this, run:")
print("pip uninstall -y triton triton_kernels")
print("pip install --index-url https://download.pytorch.org/whl/nightly/cu121 triton")
print("pip install git+https://github.com/triton-lang/triton.git@main#subdirectory=python/triton_kernels")
print("="*60 + "\n")
# Try to load without MX as fallback
print("Attempting to load model without MX format...")
import torch
load_kwargs["torch_dtype"] = torch.bfloat16
os.environ["FORCE_MX_QUANTIZATION"] = "0"
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **load_kwargs)
print("β Model loaded in bf16 mode (degraded performance)")
return model
else:
raise
def load_lora_adapter(model, adapter_id: str, subfolder: Optional[str] = None):
"""Load and attach LoRA adapter for bf16 model."""
if not _HAS_PEFT:
raise RuntimeError("PEFT is required for LoRA adapters")
print(f"\n{'='*50}")
print(f"Loading LoRA: {adapter_id}")
if subfolder:
print(f"Subfolder: {subfolder}")
print(f"{'='*50}\n")
# Prepare kwargs for PEFT
peft_kwargs = {"token": HF_TOKEN, "is_trainable": False}
if subfolder:
peft_kwargs["subfolder"] = subfolder
try:
# Load adapter configuration
peft_config = PeftConfig.from_pretrained(adapter_id, **peft_kwargs)
print(f"LoRA config: r={peft_config.r}, alpha={peft_config.lora_alpha}")
# Load the adapter
model = PeftModel.from_pretrained(model, adapter_id, **peft_kwargs)
# Warning about potential mismatch
if IS_GPT_OSS:
print("β WARNING: LoRA may have been trained on MX format")
print(" Model is running in bf16 mode - there may be compatibility issues")
print(" If generation quality is poor, the LoRA may need retraining on bf16")
print("β LoRA adapter loaded")
# Optionally merge adapter
if MERGE_ADAPTER and hasattr(model, 'merge_and_unload'):
print("Merging adapter into base model...")
model = model.merge_and_unload()
print("β Adapter merged")
return model
except Exception as e:
print(f"β Failed to load LoRA: {e}")
print("Continuing with base model only")
return model
# ===== HARMONY FORMATTING =====
def create_harmony_prompt(messages: List[Dict[str, str]], reasoning_effort: str = "high"):
"""Create Harmony-formatted prompt."""
if not HARMONY_AVAILABLE or not harmony_encoding:
# Fallback to chat template
if messages and messages[0].get("role") != "system":
messages = [{"role": "system", "content": SYSTEM_PROMPT}] + messages
return tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
# Map reasoning effort
effort_map = {
"low": ReasoningEffort.LOW,
"medium": ReasoningEffort.MEDIUM,
"high": ReasoningEffort.HIGH
}
effort = effort_map.get(reasoning_effort.lower(), ReasoningEffort.HIGH)
# Build Harmony conversation
system_content = (
SystemContent.new()
.with_model_identity("You are ChatGPT, a large language model trained by OpenAI.")
.with_reasoning_effort(effort)
.with_conversation_start_date(datetime.now().strftime("%Y-%m-%d"))
.with_knowledge_cutoff("2024-06")
.with_required_channels(REQUIRED_CHANNELS)
)
# Extract system prompt
sys_text = SYSTEM_PROMPT
rest = messages or []
if rest and rest[0].get("role") == "system":
sys_text = rest[0].get("content", SYSTEM_PROMPT)
rest = rest[1:]
# Build messages
harmony_messages = [
Message.from_role_and_content(Role.SYSTEM, system_content),
Message.from_role_and_content(
Role.DEVELOPER,
DeveloperContent.new().with_instructions(sys_text)
)
]
for msg in rest:
role = msg.get("role")
content = msg.get("content", "")
if role == "user":
harmony_messages.append(Message.from_role_and_content(Role.USER, content))
elif role == "assistant":
harmony_messages.append(
Message.from_role_and_content(Role.ASSISTANT, content).with_channel("final")
)
# Render to token IDs
convo = Conversation.from_messages(harmony_messages)
return harmony_encoding.render_conversation_for_completion(convo, Role.ASSISTANT)
def parse_harmony_response(tokens: List[int]) -> Dict[str, str]:
"""Parse Harmony response tokens into channels."""
if not HARMONY_AVAILABLE or not harmony_encoding:
text = tokenizer.decode(tokens, skip_special_tokens=False)
return {"final": extract_final_channel(text), "raw": text}
try:
# Parse using Harmony
parsed = harmony_encoding.parse_messages_from_completion_tokens(tokens, Role.ASSISTANT)
channels = {}
for msg in parsed:
channel = getattr(msg, 'channel', 'final')
if channel not in channels:
channels[channel] = ""
# Extract text content
content = msg.content
if isinstance(content, list):
text = "".join([getattr(part, "text", str(part)) for part in content])
else:
text = getattr(content, "text", str(content))
channels[channel] += text
# Ensure final channel exists
if "final" not in channels:
channels["final"] = " ".join(channels.values())
return channels
except Exception as e:
print(f"Harmony parsing failed: {e}")
text = tokenizer.decode(tokens, skip_special_tokens=False)
return {"final": extract_final_channel(text), "raw": text}
def extract_final_channel(text: str) -> str:
"""Extract final channel from raw text."""
# Look for <|channel|>final<|message|>
if "<|channel|>final<|message|>" in text:
parts = text.split("<|channel|>final<|message|>")
if len(parts) > 1:
final = parts[-1]
# Truncate at next marker
for marker in ["<|channel|>", "<|end|>", "<|return|>"]:
if marker in final:
final = final.split(marker)[0]
return final.strip()
# Fallback: return cleaned text
for marker in ["<|channel|>", "<|message|>", "<|end|>", "<|return|>"]:
text = text.replace(marker, " ")
return text.strip()
# ===== GENERATION =====
@spaces.GPU(duration=120)
def generate_on_gpu(
prompt,
temperature: float,
top_p: float,
top_k: int,
max_new_tokens: int,
do_sample: bool,
repetition_penalty: float,
seed: Optional[int]
) -> Dict[str, str]:
"""Run generation on GPU."""
import torch # Import torch inside GPU function for ZeroGPU
try:
# Set seed if provided
if seed is not None:
torch.manual_seed(int(seed))
# Load model
print("\nLoading model for generation...")
model = load_base_model("auto")
# Load LoRA if specified
if ADAPTER_ID:
model = load_lora_adapter(model, ADAPTER_ID, ADAPTER_SUBFOLDER)
model.eval()
# Prepare inputs
import torch # Make sure torch is available
device = next(model.parameters()).device
if HARMONY_AVAILABLE and isinstance(prompt, list):
# Harmony returns token IDs
input_ids = torch.tensor([prompt], dtype=torch.long, device=device)
else:
# String prompt
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
attention_mask = torch.ones_like(input_ids)
prompt_len = input_ids.shape[1]
# Generate
print("Generating response...")
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k if top_k > 0 else None,
do_sample=do_sample,
repetition_penalty=repetition_penalty,
pad_token_id=model.config.pad_token_id,
eos_token_id=HARMONY_STOP_IDS if HARMONY_STOP_IDS else tokenizer.eos_token_id,
no_repeat_ngram_size=3,
)
# Extract generated tokens
gen_tokens = outputs[0][prompt_len:].tolist()
# Truncate at stop tokens
for stop_id in HARMONY_STOP_IDS:
if stop_id in gen_tokens:
gen_tokens = gen_tokens[:gen_tokens.index(stop_id)]
break
# Parse response
channels = parse_harmony_response(gen_tokens)
return channels
except Exception as e:
error_msg = f"Generation failed: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return {"final": f"Error: {str(e)}", "raw": error_msg}
finally:
# Cleanup
import torch
if 'model' in locals():
del model
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# ===== GRADIO INTERFACE =====
def chat_response(
message: str,
history: List[List[str]],
system_prompt: str,
temperature: float,
top_p: float,
top_k: int,
max_new_tokens: int,
do_sample: bool,
repetition_penalty: float,
seed: Optional[int],
reasoning_effort: str,
show_thinking: bool
) -> str:
"""Handle chat interaction."""
try:
# Build conversation
messages = [{"role": "system", "content": system_prompt or SYSTEM_PROMPT}]
# Add history
for turn in history or []:
if isinstance(turn, (list, tuple)) and len(turn) >= 2:
user_msg, assistant_msg = turn[0], turn[1]
if user_msg:
messages.append({"role": "user", "content": str(user_msg)})
if assistant_msg:
messages.append({"role": "assistant", "content": str(assistant_msg)})
# Add current message
messages.append({"role": "user", "content": message})
# Create prompt
prompt = create_harmony_prompt(messages, reasoning_effort)
# Generate
channels = generate_on_gpu(
prompt,
temperature,
top_p,
top_k,
max_new_tokens,
do_sample,
repetition_penalty,
seed
)
# Format response
if show_thinking and len(channels) > 1:
response = "## Chain of Thought:\n\n"
for channel, content in channels.items():
if channel != "final" and content:
response += f"### {channel.capitalize()}:\n{content}\n\n"
response += f"### Final Response:\n{channels.get('final', 'No response generated')}"
else:
response = channels.get("final", "No response generated")
return response
except Exception as e:
return f"Error: {str(e)}"
# ===== BUILD UI =====
with gr.Blocks(theme=gr.themes.Soft(), title="Mirel") as demo:
# Header with status
status_mx = "β
MX Format" if _HAS_TRITON_KERNELS else "β No MX Support"
status_harmony = "β
Harmony" if HARMONY_AVAILABLE else "β No Harmony"
gr.Markdown(f"""
# π€ Mirel β Chain-of-Thought Assistant
**Model:** `{MODEL_ID}` | **Adapter:** `{ADAPTER_ID or 'None'}`
**Status:** {status_mx} | {status_harmony} | {"β
ZeroGPU" if ZEROGPU else "CPU Mode"}
{'''
β οΈ **WARNING: MX Format Support Missing!**
Install with: `pip install git+https://github.com/triton-lang/triton.git@main#subdirectory=python/triton_kernels`
''' if IS_GPT_OSS and not _HAS_TRITON_KERNELS else ''}
""")
# System prompt
system_prompt = gr.Textbox(
label="System Prompt",
value=SYSTEM_PROMPT,
lines=2
)
# Settings
with gr.Accordion("βοΈ Generation Settings", open=False):
with gr.Row():
temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="Top-p")
top_k = gr.Slider(0, 200, value=50, step=1, label="Top-k")
with gr.Row():
max_new_tokens = gr.Slider(16, 2048, value=MAX_NEW_TOKENS, step=16, label="Max tokens")
repetition_penalty = gr.Slider(1.0, 1.5, value=1.1, step=0.01, label="Repetition penalty")
seed = gr.Number(value=None, label="Seed (optional)", precision=0)
with gr.Row():
do_sample = gr.Checkbox(value=True, label="Sample")
show_thinking = gr.Checkbox(value=False, label="Show thinking channels")
reasoning_effort = gr.Radio(
["low", "medium", "high"],
value="high",
label="Reasoning effort"
)
# Chat interface
chat = gr.ChatInterface(
fn=chat_response,
additional_inputs=[
system_prompt,
temperature,
top_p,
top_k,
max_new_tokens,
do_sample,
repetition_penalty,
seed,
reasoning_effort,
show_thinking
],
title=None,
examples=[
["Hello! Can you introduce yourself?"],
["What's the capital of France?"],
["Explain quantum computing simply"],
["Write a haiku about coding"],
],
cache_examples=False,
)
# Footer
gr.Markdown("""
---
π‘ **Tips:**
- Enable "Show thinking channels" to see the model's reasoning process
- Adjust "Reasoning effort" for faster responses (low) or better quality (high)
- The model uses MX format on H200 GPUs for optimal performance
""")
# ===== LAUNCH =====
if __name__ == "__main__":
print("\n" + "="*60)
print("MIREL READY TO LAUNCH")
print(f"Model: {MODEL_ID}")
print(f"Adapter: {ADAPTER_ID or 'None'}")
print(f"MX Format: {'ENABLED' if _HAS_TRITON_KERNELS else 'DISABLED'}")
print(f"Harmony: {'ENABLED' if HARMONY_AVAILABLE else 'DISABLED'}")
print("="*60 + "\n")
demo.queue(max_size=10).launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |