AbstractPhil
yes
6228595
raw
history blame
22.1 kB
"""
Mirel Harmony Inference – HF Space (Gradio)
ZeroGPU-ready, Harmony formatting, MX format support for GPT-OSS-20B
Proper LoRA adapter loading and conversion for MX compatibility
Single file: app.py
Requirements:
huggingface_hub>=0.34.0
transformers>=4.55.0
accelerate>=0.33.0
peft>=0.11.0
torch>=2.4.0
bitsandbytes>=0.43.1
openai-harmony
gradio>=5.42.0
triton>=3.4.0
git+https://github.com/triton-lang/triton.git@main#subdirectory=python/triton_kernels
"""
# ===== SETUP: Ensure triton_kernels is installed for MX format =====
import subprocess
import sys
def ensure_triton_kernels():
"""Ensure triton_kernels is installed for MX format support on H200."""
try:
import triton_kernels
print("βœ“ triton_kernels already installed - MX format supported")
return True
except ImportError:
print("Installing triton_kernels for MX format support...")
try:
subprocess.check_call([
sys.executable, "-m", "pip", "install",
"git+https://github.com/triton-lang/triton.git@main#subdirectory=python/triton_kernels"
])
print("βœ“ triton_kernels installed successfully")
# Force reimport
import importlib
import site
importlib.reload(site)
return True
except subprocess.CalledProcessError as e:
print(f"βœ— Failed to install triton_kernels: {e}")
print("ERROR: MX format will NOT work properly without triton_kernels!")
return False
# Install triton_kernels before other imports
_TRITON_INSTALL_SUCCESS = ensure_triton_kernels()
# ===== MAIN IMPORTS =====
from __future__ import annotations
import os, gc, json, torch, warnings, traceback
from dataclasses import dataclass
from typing import List, Dict, Optional, Any, Union
from datetime import datetime
import gradio as gr
import spaces # required for ZeroGPU
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import numpy as np
# Suppress warnings
warnings.filterwarnings("ignore", message=".*microscaling.*")
warnings.filterwarnings("ignore", message=".*mx.*")
# Import Harmony components
try:
from openai_harmony import (
Author,
Conversation,
HarmonyEncodingName,
Message,
Role,
SystemContent,
DeveloperContent,
load_harmony_encoding,
ReasoningEffort
)
HARMONY_AVAILABLE = True
print("βœ“ OpenAI Harmony loaded successfully")
except ImportError:
print("⚠ openai_harmony not installed. Install with: pip install openai-harmony")
HARMONY_AVAILABLE = False
# Import PEFT for LoRA support
try:
from peft import PeftModel, PeftConfig, LoraConfig, get_peft_model
_HAS_PEFT = True
print("βœ“ PEFT loaded successfully")
except Exception:
_HAS_PEFT = False
print("⚠ PEFT not available. Install with: pip install peft")
# Check for triton_kernels (required for MX format)
try:
import triton_kernels
_HAS_TRITON_KERNELS = True
print("βœ“ triton_kernels loaded - MX format enabled")
except ImportError:
_HAS_TRITON_KERNELS = False
print("βœ— triton_kernels not available - MX format disabled!")
# ===== CONFIGURATION =====
MODEL_ID = os.getenv("MODEL_ID", "openai/gpt-oss-20b")
ADAPTER_ID = os.getenv("ADAPTER_ID", "AbstractPhil/mirel-gpt-oss-20b")
ADAPTER_SUBFOLDER = os.getenv("ADAPTER_SUBFOLDER", "checkpoints/checkpoint-516")
ATTN_IMPL = os.getenv("ATTN_IMPL", "eager")
SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT", "You are Mirel, a memory-stable symbolic assistant.")
MAX_NEW_TOKENS = int(os.getenv("MAX_NEW_TOKENS", "512"))
ZEROGPU = os.getenv("ZEROGPU", os.getenv("ZERO_GPU", "1")) == "1"
MERGE_ADAPTER = os.getenv("MERGE_ADAPTER", "0") == "1"
# Detect if using GPT-OSS model
IS_GPT_OSS = "gpt-oss" in MODEL_ID.lower()
USE_MX_FORMAT = IS_GPT_OSS and _HAS_TRITON_KERNELS
# Harmony channels for chain-of-thought
REQUIRED_CHANNELS = ["analysis", "commentary", "final"]
# HF Authentication
HF_TOKEN = (
os.getenv("HF_TOKEN")
or os.getenv("HUGGING_FACE_HUB_TOKEN")
or os.getenv("HUGGINGFACEHUB_API_TOKEN")
or os.getenv("HF_ACCESS_TOKEN")
)
def _hf_login():
"""Login to HuggingFace Hub."""
if HF_TOKEN:
try:
from huggingface_hub import login, whoami
login(token=HF_TOKEN, add_to_git_credential=True)
try:
user = whoami(token=HF_TOKEN)
print(f"βœ“ Logged in as: {user.get('name', user.get('id', 'unknown'))}")
except:
print("βœ“ HF login successful")
except Exception as e:
print(f"⚠ HF login failed: {e}")
else:
print("⚠ No HF_TOKEN found in environment")
# Login before loading models
_hf_login()
# Disable tokenizer parallelism warning
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# ===== LOAD TOKENIZER =====
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN)
print(f"βœ“ Tokenizer loaded from {MODEL_ID}")
except Exception as e:
print(f"βœ— Failed to load tokenizer: {e}")
raise
# ===== HARMONY SETUP =====
if HARMONY_AVAILABLE:
harmony_encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
HARMONY_STOP_IDS = harmony_encoding.stop_tokens_for_assistant_actions()
else:
harmony_encoding = None
HARMONY_STOP_IDS = []
# ===== MODEL LOADING WITH MX FORMAT SUPPORT =====
def detect_mx_format(model) -> bool:
"""Check if model is using native MX format."""
if not hasattr(model, 'model') or not hasattr(model.model, 'layers'):
return False
try:
first_layer = model.model.layers[0]
if hasattr(first_layer, 'block_sparse_moe'):
expert = first_layer.block_sparse_moe.experts[0]
if hasattr(expert, 'w1'):
# Check for MX format scale tensors
return hasattr(expert.w1, 'scales')
except:
pass
return False
def load_base_model(device_map: Optional[str] = "auto") -> AutoModelForCausalLM:
"""Load the base model with proper MX format handling."""
print(f"\n{'='*50}")
print(f"Loading model: {MODEL_ID}")
print(f"MX Format Available: {_HAS_TRITON_KERNELS}")
print(f"{'='*50}\n")
# Load config to check model type
config = AutoConfig.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN)
# Build loading kwargs
load_kwargs = {
"trust_remote_code": True,
"device_map": device_map,
"low_cpu_mem_usage": True,
"token": HF_TOKEN,
"attn_implementation": ATTN_IMPL if device_map != "cpu" else "eager",
}
if IS_GPT_OSS:
if _HAS_TRITON_KERNELS:
print("β†’ Loading with native MX format support")
load_kwargs["torch_dtype"] = "auto" # Let model use native MX
else:
print("⚠ No triton_kernels - falling back to bf16 (dequantized)")
print(" This will likely cause LoRA compatibility issues!")
load_kwargs["torch_dtype"] = torch.bfloat16
else:
# Non-GPT-OSS models
load_kwargs["torch_dtype"] = torch.bfloat16
# Load the model
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **load_kwargs)
# Verify format
print(f"Model loaded - dtype: {next(model.parameters()).dtype}")
if IS_GPT_OSS:
is_mx = detect_mx_format(model)
if is_mx:
print("βœ“ Confirmed: Using native MX format")
else:
print("⚠ Model dequantized to bf16 - LoRA may fail")
# Set model config
if getattr(model.config, "pad_token_id", None) is None:
model.config.pad_token_id = tokenizer.pad_token_id or tokenizer.eos_token_id
model.config.use_cache = True
return model
def load_lora_adapter(model, adapter_id: str, subfolder: Optional[str] = None):
"""Load and attach LoRA adapter with MX format handling."""
if not _HAS_PEFT:
raise RuntimeError("PEFT is required for LoRA adapters")
print(f"\n{'='*50}")
print(f"Loading LoRA: {adapter_id}")
if subfolder:
print(f"Subfolder: {subfolder}")
print(f"{'='*50}\n")
# Check if model is using MX format
is_mx = detect_mx_format(model) if IS_GPT_OSS else False
# Prepare kwargs for PEFT
peft_kwargs = {"token": HF_TOKEN, "is_trainable": False}
if subfolder:
peft_kwargs["subfolder"] = subfolder
try:
# Load adapter configuration
peft_config = PeftConfig.from_pretrained(adapter_id, **peft_kwargs)
print(f"LoRA config: r={peft_config.r}, alpha={peft_config.lora_alpha}")
# Load the adapter
model = PeftModel.from_pretrained(model, adapter_id, **peft_kwargs)
if not is_mx and IS_GPT_OSS:
print("⚠ WARNING: Model is bf16 but LoRA was likely trained on MX format")
print(" Reducing LoRA influence to 10% to prevent corruption")
# Scale down LoRA weights
for name, param in model.named_parameters():
if 'lora_' in name:
param.data *= 0.1
print("βœ“ LoRA adapter loaded successfully")
# Optionally merge adapter
if MERGE_ADAPTER and hasattr(model, 'merge_and_unload'):
print("Merging adapter into base model...")
model = model.merge_and_unload()
print("βœ“ Adapter merged")
return model
except Exception as e:
print(f"βœ— Failed to load LoRA: {e}")
print("Continuing with base model only")
return model
# ===== HARMONY FORMATTING =====
def create_harmony_prompt(messages: List[Dict[str, str]], reasoning_effort: str = "high"):
"""Create Harmony-formatted prompt."""
if not HARMONY_AVAILABLE or not harmony_encoding:
# Fallback to chat template
if messages and messages[0].get("role") != "system":
messages = [{"role": "system", "content": SYSTEM_PROMPT}] + messages
return tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
# Map reasoning effort
effort_map = {
"low": ReasoningEffort.LOW,
"medium": ReasoningEffort.MEDIUM,
"high": ReasoningEffort.HIGH
}
effort = effort_map.get(reasoning_effort.lower(), ReasoningEffort.HIGH)
# Build Harmony conversation
system_content = (
SystemContent.new()
.with_model_identity("You are ChatGPT, a large language model trained by OpenAI.")
.with_reasoning_effort(effort)
.with_conversation_start_date(datetime.now().strftime("%Y-%m-%d"))
.with_knowledge_cutoff("2024-06")
.with_required_channels(REQUIRED_CHANNELS)
)
# Extract system prompt
sys_text = SYSTEM_PROMPT
rest = messages or []
if rest and rest[0].get("role") == "system":
sys_text = rest[0].get("content", SYSTEM_PROMPT)
rest = rest[1:]
# Build messages
harmony_messages = [
Message.from_role_and_content(Role.SYSTEM, system_content),
Message.from_role_and_content(
Role.DEVELOPER,
DeveloperContent.new().with_instructions(sys_text)
)
]
for msg in rest:
role = msg.get("role")
content = msg.get("content", "")
if role == "user":
harmony_messages.append(Message.from_role_and_content(Role.USER, content))
elif role == "assistant":
harmony_messages.append(
Message.from_role_and_content(Role.ASSISTANT, content).with_channel("final")
)
# Render to token IDs
convo = Conversation.from_messages(harmony_messages)
return harmony_encoding.render_conversation_for_completion(convo, Role.ASSISTANT)
def parse_harmony_response(tokens: List[int]) -> Dict[str, str]:
"""Parse Harmony response tokens into channels."""
if not HARMONY_AVAILABLE or not harmony_encoding:
text = tokenizer.decode(tokens, skip_special_tokens=False)
return {"final": extract_final_channel(text), "raw": text}
try:
# Parse using Harmony
parsed = harmony_encoding.parse_messages_from_completion_tokens(tokens, Role.ASSISTANT)
channels = {}
for msg in parsed:
channel = getattr(msg, 'channel', 'final')
if channel not in channels:
channels[channel] = ""
# Extract text content
content = msg.content
if isinstance(content, list):
text = "".join([getattr(part, "text", str(part)) for part in content])
else:
text = getattr(content, "text", str(content))
channels[channel] += text
# Ensure final channel exists
if "final" not in channels:
channels["final"] = " ".join(channels.values())
return channels
except Exception as e:
print(f"Harmony parsing failed: {e}")
text = tokenizer.decode(tokens, skip_special_tokens=False)
return {"final": extract_final_channel(text), "raw": text}
def extract_final_channel(text: str) -> str:
"""Extract final channel from raw text."""
# Look for <|channel|>final<|message|>
if "<|channel|>final<|message|>" in text:
parts = text.split("<|channel|>final<|message|>")
if len(parts) > 1:
final = parts[-1]
# Truncate at next marker
for marker in ["<|channel|>", "<|end|>", "<|return|>"]:
if marker in final:
final = final.split(marker)[0]
return final.strip()
# Fallback: return cleaned text
for marker in ["<|channel|>", "<|message|>", "<|end|>", "<|return|>"]:
text = text.replace(marker, " ")
return text.strip()
# ===== GENERATION =====
@spaces.GPU(duration=120)
def generate_on_gpu(
prompt,
temperature: float,
top_p: float,
top_k: int,
max_new_tokens: int,
do_sample: bool,
repetition_penalty: float,
seed: Optional[int]
) -> Dict[str, str]:
"""Run generation on GPU."""
try:
# Set seed if provided
if seed is not None:
torch.manual_seed(int(seed))
# Load model
print("\nLoading model for generation...")
model = load_base_model("auto")
# Load LoRA if specified
if ADAPTER_ID:
model = load_lora_adapter(model, ADAPTER_ID, ADAPTER_SUBFOLDER)
model.eval()
# Prepare inputs
device = next(model.parameters()).device
if HARMONY_AVAILABLE and isinstance(prompt, list):
# Harmony returns token IDs
input_ids = torch.tensor([prompt], dtype=torch.long, device=device)
else:
# String prompt
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
attention_mask = torch.ones_like(input_ids)
prompt_len = input_ids.shape[1]
# Generate
print("Generating response...")
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k if top_k > 0 else None,
do_sample=do_sample,
repetition_penalty=repetition_penalty,
pad_token_id=model.config.pad_token_id,
eos_token_id=HARMONY_STOP_IDS if HARMONY_STOP_IDS else tokenizer.eos_token_id,
no_repeat_ngram_size=3,
)
# Extract generated tokens
gen_tokens = outputs[0][prompt_len:].tolist()
# Truncate at stop tokens
for stop_id in HARMONY_STOP_IDS:
if stop_id in gen_tokens:
gen_tokens = gen_tokens[:gen_tokens.index(stop_id)]
break
# Parse response
channels = parse_harmony_response(gen_tokens)
return channels
except Exception as e:
error_msg = f"Generation failed: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return {"final": f"Error: {str(e)}", "raw": error_msg}
finally:
# Cleanup
if 'model' in locals():
del model
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# ===== GRADIO INTERFACE =====
def chat_response(
message: str,
history: List[List[str]],
system_prompt: str,
temperature: float,
top_p: float,
top_k: int,
max_new_tokens: int,
do_sample: bool,
repetition_penalty: float,
seed: Optional[int],
reasoning_effort: str,
show_thinking: bool
) -> str:
"""Handle chat interaction."""
try:
# Build conversation
messages = [{"role": "system", "content": system_prompt or SYSTEM_PROMPT}]
# Add history
for turn in history or []:
if isinstance(turn, (list, tuple)) and len(turn) >= 2:
user_msg, assistant_msg = turn[0], turn[1]
if user_msg:
messages.append({"role": "user", "content": str(user_msg)})
if assistant_msg:
messages.append({"role": "assistant", "content": str(assistant_msg)})
# Add current message
messages.append({"role": "user", "content": message})
# Create prompt
prompt = create_harmony_prompt(messages, reasoning_effort)
# Generate
channels = generate_on_gpu(
prompt,
temperature,
top_p,
top_k,
max_new_tokens,
do_sample,
repetition_penalty,
seed
)
# Format response
if show_thinking and len(channels) > 1:
response = "## Chain of Thought:\n\n"
for channel, content in channels.items():
if channel != "final" and content:
response += f"### {channel.capitalize()}:\n{content}\n\n"
response += f"### Final Response:\n{channels.get('final', 'No response generated')}"
else:
response = channels.get("final", "No response generated")
return response
except Exception as e:
return f"Error: {str(e)}"
# ===== BUILD UI =====
with gr.Blocks(theme=gr.themes.Soft(), title="Mirel") as demo:
# Header with status
status_mx = "βœ… MX Format" if _HAS_TRITON_KERNELS else "❌ No MX Support"
status_harmony = "βœ… Harmony" if HARMONY_AVAILABLE else "❌ No Harmony"
gr.Markdown(f"""
# πŸ€– Mirel – Chain-of-Thought Assistant
**Model:** `{MODEL_ID}` | **Adapter:** `{ADAPTER_ID or 'None'}`
**Status:** {status_mx} | {status_harmony} | {"βœ… ZeroGPU" if ZEROGPU else "CPU Mode"}
{'''
⚠️ **WARNING: MX Format Support Missing!**
Install with: `pip install git+https://github.com/triton-lang/triton.git@main#subdirectory=python/triton_kernels`
''' if IS_GPT_OSS and not _HAS_TRITON_KERNELS else ''}
""")
# System prompt
system_prompt = gr.Textbox(
label="System Prompt",
value=SYSTEM_PROMPT,
lines=2
)
# Settings
with gr.Accordion("βš™οΈ Generation Settings", open=False):
with gr.Row():
temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="Top-p")
top_k = gr.Slider(0, 200, value=50, step=1, label="Top-k")
with gr.Row():
max_new_tokens = gr.Slider(16, 2048, value=MAX_NEW_TOKENS, step=16, label="Max tokens")
repetition_penalty = gr.Slider(1.0, 1.5, value=1.1, step=0.01, label="Repetition penalty")
seed = gr.Number(value=None, label="Seed (optional)", precision=0)
with gr.Row():
do_sample = gr.Checkbox(value=True, label="Sample")
show_thinking = gr.Checkbox(value=False, label="Show thinking channels")
reasoning_effort = gr.Radio(
["low", "medium", "high"],
value="high",
label="Reasoning effort"
)
# Chat interface
chat = gr.ChatInterface(
fn=chat_response,
additional_inputs=[
system_prompt,
temperature,
top_p,
top_k,
max_new_tokens,
do_sample,
repetition_penalty,
seed,
reasoning_effort,
show_thinking
],
title=None,
examples=[
["Hello! Can you introduce yourself?"],
["What's the capital of France?"],
["Explain quantum computing simply"],
["Write a haiku about coding"],
],
cache_examples=False,
)
# Footer
gr.Markdown("""
---
πŸ’‘ **Tips:**
- Enable "Show thinking channels" to see the model's reasoning process
- Adjust "Reasoning effort" for faster responses (low) or better quality (high)
- The model uses MX format on H200 GPUs for optimal performance
""")
# ===== LAUNCH =====
if __name__ == "__main__":
print("\n" + "="*60)
print("MIREL READY TO LAUNCH")
print(f"Model: {MODEL_ID}")
print(f"Adapter: {ADAPTER_ID or 'None'}")
print(f"MX Format: {'ENABLED' if _HAS_TRITON_KERNELS else 'DISABLED'}")
print(f"Harmony: {'ENABLED' if HARMONY_AVAILABLE else 'DISABLED'}")
print("="*60 + "\n")
demo.queue(max_size=10).launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)