""" Mirel Harmony Inference – HF Space (Gradio) ZeroGPU-ready, Harmony formatting, optional Rose-guided decoding Chain-of-thought model with proper channel extraction using openai_harmony Single file: app.py """ from __future__ import annotations import os, gc, json, threading, torch from dataclasses import dataclass from typing import List, Dict, Optional, Any from datetime import datetime import gradio as gr import spaces # required for ZeroGPU from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList # Import Harmony components try: from openai_harmony import ( Author, Conversation, HarmonyEncodingName, Message, Role, SystemContent, DeveloperContent, load_harmony_encoding, ReasoningEffort ) HARMONY_AVAILABLE = True except ImportError: print("[WARNING] openai_harmony not installed. Install with: pip install openai-harmony") HARMONY_AVAILABLE = False # ----------------------- # Config & runtime modes # ----------------------- DTYPE_MAP = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32} MODEL_ID = os.getenv("MODEL_ID", "openai/gpt-oss-20b") ADAPTER_ID = os.getenv("ADAPTER_ID") or None ADAPTER_SUBFOLDER = os.getenv("ADAPTER_SUBFOLDER") or None ATTN_IMPL = os.getenv("ATTN_IMPL", "eager") DTYPE = DTYPE_MAP.get(os.getenv("DTYPE", "bf16").lower(), torch.bfloat16) SYSTEM_DEF = os.getenv("SYSTEM_PROMPT", "You are Mirel, a memory-stable symbolic assistant.") MAX_DEF = int(os.getenv("MAX_NEW_TOKENS", "256")) ZEROGPU = os.getenv("ZEROGPU", os.getenv("ZERO_GPU", "0")) == "1" LOAD_4BIT = os.getenv("LOAD_4BIT", "0") == "1" # Harmony channels for CoT REQUIRED_CHANNELS = ["analysis", "final"] # HF Auth - properly handle multiple token env var names HF_TOKEN: Optional[str] = ( os.getenv("HF_TOKEN") or os.getenv("HUGGING_FACE_HUB_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN") or os.getenv("HF_ACCESS_TOKEN") ) def _hf_login() -> None: """Login to HF Hub using common env secret names.""" if HF_TOKEN: try: from huggingface_hub import login, whoami login(token=HF_TOKEN, add_to_git_credential=True) try: who = whoami(token=HF_TOKEN) print(f"[HF Auth] Logged in as: {who.get('name') or who.get('fullname') or who.get('id', 'unknown')}") except Exception: print("[HF Auth] Login successful but couldn't get user info") except Exception as e: print(f"[HF Auth] Login failed: {e}") else: print("[HF Auth] No token found in environment variables") # Login before loading any models _hf_login() os.environ["TOKENIZERS_PARALLELISM"] = "false" # Load Harmony encoding if available if HARMONY_AVAILABLE: harmony_encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS) else: harmony_encoding = None # Stop tokens per Harmony spec: <|return|> (200002), <|call|> (200012) HARMONY_STOP_IDS = harmony_encoding.stop_tokens_for_assistant_actions() if HARMONY_AVAILABLE else [] # Tokenizer is lightweight; load once try: tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN) print(f"[Model] Successfully loaded tokenizer from {MODEL_ID}") except Exception as e: print(f"[Model] Failed to load tokenizer: {e}") raise # ----------------------- # Model loading # ----------------------- try: from peft import PeftModel _HAS_PEFT = True except Exception: _HAS_PEFT = False def _build_model_kwargs(device_map: Optional[str]) -> Dict[str, Any]: kw: Dict[str, Any] = dict( torch_dtype=DTYPE, device_map=device_map, attn_implementation=ATTN_IMPL if device_map != "cpu" else "eager", trust_remote_code=True, low_cpu_mem_usage=True, token=HF_TOKEN, ) if LOAD_4BIT and device_map != "cpu": try: import bitsandbytes as _bnb kw.update(load_in_4bit=True) if kw["device_map"] is None: kw["device_map"] = "auto" except Exception: pass return kw def _load_model_on(device_map: Optional[str]) -> AutoModelForCausalLM: print(f"[Model] Loading base model from {MODEL_ID}...") model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **_build_model_kwargs(device_map)) if ADAPTER_ID: if not _HAS_PEFT: raise RuntimeError("peft is required when ADAPTER_ID is set.") print(f"[Model] Loading adapter from {ADAPTER_ID}...") peft_kwargs: Dict[str, Any] = {"token": HF_TOKEN} if ADAPTER_SUBFOLDER: peft_kwargs["subfolder"] = ADAPTER_SUBFOLDER model = PeftModel.from_pretrained(model, ADAPTER_ID, is_trainable=False, **peft_kwargs) model.eval() # Ensure a valid pad_token_id is set; some OSS checkpoints reuse eos as pad if getattr(model.config, "pad_token_id", None) is None: model.config.pad_token_id = tokenizer.pad_token_id or tokenizer.eos_token_id model.config.use_cache = True print("[Model] Model loaded successfully") return model # ----------------------- # Harmony formatting # ----------------------- def create_harmony_prompt(messages: List[Dict[str, str]], reasoning_effort: str = "high") -> Any: """Build a Harmony-formatted prompt. If Harmony is available, return **token IDs** rendered by `openai_harmony` (authoritative). Otherwise fall back to the tokenizer's chat template and return a string. """ if HARMONY_AVAILABLE and harmony_encoding is not None: effort_map = {"low": ReasoningEffort.LOW, "medium": ReasoningEffort.MEDIUM, "high": ReasoningEffort.HIGH} effort = effort_map.get(str(reasoning_effort).lower(), ReasoningEffort.HIGH) system_content = ( SystemContent.new() .with_model_identity("You are ChatGPT, a large language model trained by OpenAI.") .with_reasoning_effort(effort) .with_conversation_start_date(datetime.now().strftime("%Y-%m-%d")) .with_knowledge_cutoff("2024-06") .with_required_channels(REQUIRED_CHANNELS) ) # Use first system message as developer instructions if present, else SYSTEM_DEF sys_text = SYSTEM_DEF rest: List[Dict[str, str]] = messages or [] if rest and rest[0].get("role") == "system": sys_text = rest[0].get("content") or SYSTEM_DEF rest = rest[1:] harmony_messages = [Message.from_role_and_content(Role.SYSTEM, system_content)] dev = DeveloperContent.new().with_instructions(sys_text) harmony_messages.append(Message.from_role_and_content(Role.DEVELOPER, dev)) for m in rest: role = m.get("role"); content = m.get("content", "") if role == "user": harmony_messages.append(Message.from_role_and_content(Role.USER, content)) elif role == "assistant": harmony_messages.append( Message.from_role_and_content(Role.ASSISTANT, content).with_channel("final") ) convo = Conversation.from_messages(harmony_messages) rendered = harmony_encoding.render_conversation_for_completion(convo, Role.ASSISTANT) # Ensure assistant header includes a final channel + message start to avoid 'assistantassistant...' loops try: _tail = tokenizer.decode(list(rendered)[-64:], skip_special_tokens=False) if '<|channel|>final<|message|>' not in _tail: rendered = list(rendered) + tokenizer.encode('<|channel|>final<|message|>', add_special_tokens=False) except Exception: rendered = list(rendered) return rendered # Fallback: tokenizer chat template -> string prompt if not messages or messages[0].get("role") != "system": messages = [{"role": "system", "content": SYSTEM_DEF}] + (messages or []) return tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) def parse_harmony_response(tokens: List[int]) -> Dict[str, str]: """Parse response tokens using Harmony format to extract channels.""" if not HARMONY_AVAILABLE: # Fallback: just decode and extract final channel manually text = tokenizer.decode(tokens, skip_special_tokens=False) return {"final": extract_final_channel_fallback(text), "raw": text} # Parse messages from completion tokens parsed_messages = harmony_encoding.parse_messages_from_completion_tokens(tokens, Role.ASSISTANT) # Extract content by channel channels = {} for msg in parsed_messages: channel = msg.channel if hasattr(msg, 'channel') else "final" if channel not in channels: channels[channel] = "" channels[channel] += "".join([getattr(part, "text", str(part)) for part in (msg.content if isinstance(msg.content, list) else [msg.content])]) # Ensure we have a final channel if "final" not in channels: channels["final"] = " ".join(channels.values()) return channels def extract_final_channel_fallback(text: str) -> str: """Robustly extract the channel from decoded Harmony text. Works even if parsing fails or the model emits extra headers. """ try: chunks: Dict[str, str] = {} pieces = text.split("<|channel|>") for seg in pieces[1:]: name_end = seg.find("<|message|>") if name_end <= 0: continue ch = seg[:name_end].strip() body_start = name_end + len("<|message|>") # end at next channel/end/return marker next_pos = len(seg) for delim in ("<|channel|>", "<|end|>", "<|return|>"): p = seg.find(delim, body_start) if p != -1: next_pos = min(next_pos, p) body = seg[body_start:next_pos] chunks[ch] = chunks.get(ch, "") + body final_txt = (chunks.get("final", "").strip()) if final_txt: return final_txt # Fallback: everything after last final marker up to a terminator if "<|channel|>final<|message|>" in text: tail = text.split("<|channel|>final<|message|>")[-1] for delim in ("<|return|>", "<|end|>", "<|channel|>"): idx = tail.find(delim) if idx != -1: tail = tail[:idx] break return tail.strip() except Exception: pass return text.strip() # ----------------------- # Rose guidance # ----------------------- def build_bias_from_tokens(tokenizer, mapping: Dict[str, float]) -> torch.Tensor: """Create vocab bias from {token: weight}.""" vocab_size = len(tokenizer) bias = torch.zeros(vocab_size, dtype=torch.float32) for tok, w in mapping.items(): if tok is None: continue tid = tokenizer.convert_tokens_to_ids(tok) if isinstance(tid, list): for t in tid: if isinstance(t, int) and t >= 0: bias[t] += float(w) / max(1, len(tid)) elif isinstance(tid, int) and t >= 0: bias[tid] += float(w) return bias class RoseGuidedLogits(torch.nn.Module): def __init__(self, bias_vec: torch.Tensor, alpha: float = 1.0): super().__init__() self.bias_vec = bias_vec self.alpha = float(alpha) def forward(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: return scores + self.alpha * self.bias_vec.to(scores.device) class StopOnTokens(StoppingCriteria): def __init__(self, stop_ids: List[int]): self.stop_ids = set(int(s) for s in (stop_ids or [])) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs): return int(input_ids[0, -1]) in self.stop_ids @spaces.GPU(duration=120) def zerogpu_generate(full_prompt, gen_kwargs: Dict[str, Any], rose_map: Optional[Dict[str, float]], rose_alpha: float, rose_score: Optional[float], seed: Optional[int]) -> Dict[str, str]: """Run inference on GPU and return parsed channels.""" try: if seed is not None: torch.manual_seed(int(seed)) # Load model model = _load_model_on("auto") # Setup logits processor for Rose guidance logits_processor = None if rose_map: bias = build_bias_from_tokens(tokenizer, rose_map).to(next(model.parameters()).device) eff_alpha = float(rose_alpha) * (float(rose_score) if rose_score is not None else 1.0) logits_processor = [RoseGuidedLogits(bias, eff_alpha)] # Tokenize / prepare inputs device = next(model.parameters()).device if HARMONY_AVAILABLE and not isinstance(full_prompt, str): # Accept list/tuple or any iterable of ints from openai_harmony try: token_list = list(full_prompt) except TypeError: token_list = list(getattr(full_prompt, "ids", getattr(full_prompt, "token_ids", []))) if not token_list: raise ValueError("Harmony prompt produced no tokens") input_ids = torch.tensor([token_list], dtype=torch.long, device=device) attention_mask = torch.ones_like(input_ids, dtype=torch.long, device=device) inputs = {"input_ids": input_ids, "attention_mask": attention_mask} prompt_len = input_ids.shape[1] else: enc = tokenizer(full_prompt, return_tensors="pt") inputs = {k: v.to(device) for k, v in enc.items()} prompt_len = int(inputs["input_ids"].shape[1]) if "attention_mask" not in inputs: inputs["attention_mask"] = torch.ones_like(inputs["input_ids"], dtype=torch.long, device=device) # Prepare stopping sc = None if HARMONY_AVAILABLE and HARMONY_STOP_IDS: sc = StoppingCriteriaList([StopOnTokens(HARMONY_STOP_IDS)]) # Generate # Disallow degenerate header loops bad_words_ids = None try: _B = [] for s in ("assistantassistant", "assistant", "<|assistant|>"): ids = tokenizer.encode(s, add_special_tokens=False) if ids: _B.append(ids) bad_words_ids = _B if _B else None except Exception: pass out_ids = model.generate( **inputs, do_sample=bool(gen_kwargs.get("do_sample", True)), temperature=float(gen_kwargs.get("temperature", 0.7)), top_p=float(gen_kwargs.get("top_p", 0.9)), top_k=(int(gen_kwargs.get("top_k")) if gen_kwargs.get("top_k") and int(gen_kwargs.get("top_k")) > 0 else None), max_new_tokens=int(gen_kwargs.get("max_new_tokens", MAX_DEF)), pad_token_id=model.config.pad_token_id, eos_token_id=tokenizer.eos_token_id, bad_words_ids=bad_words_ids, logits_processor=logits_processor, repetition_penalty=float(gen_kwargs.get("repetition_penalty", 1.2)), no_repeat_ngram_size=int(gen_kwargs.get("no_repeat_ngram_size", 8)), stopping_criteria=sc, ) # Extract generated tokens only out_list = out_ids[0].tolist() gen_ids = out_list[prompt_len:] # Truncate at first Harmony stop token if present if HARMONY_AVAILABLE: for sid in HARMONY_STOP_IDS: if sid in gen_ids: gen_ids = gen_ids[:gen_ids.index(sid)] break # Parse response with Harmony if HARMONY_AVAILABLE: try: channels = parse_harmony_response(gen_ids) except Exception: # Fallback to text parsing if Harmony parser fails decoded = tokenizer.decode(gen_ids, skip_special_tokens=False) channels = { "final": extract_final_channel_fallback(decoded), "raw": decoded } else: # Fallback decode + channels decoded = tokenizer.decode(gen_ids, skip_special_tokens=False) channels = { "final": extract_final_channel_fallback(decoded), "raw": decoded } return channels except Exception as e: return {"final": f"[Error] {type(e).__name__}: {str(e)}", "raw": str(e)} finally: # Cleanup try: del model except: pass gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() # ----------------------- # GPU Debug: Harmony Inspector # ----------------------- @spaces.GPU(duration=120) def zerogpu_generate_debug(full_prompt, gen_kwargs: Dict[str, Any]) -> Dict[str, Any]: """Minimal GPU path to run a single prompt and return Harmony-parsed output along with short token previews for debugging. Does not use Rose for clarity.""" model = None try: model = _load_model_on("auto") device = next(model.parameters()).device # Prepare inputs (tokens if Harmony renderer used, else string -> encode) if HARMONY_AVAILABLE and not isinstance(full_prompt, str): token_list = list(full_prompt) if not token_list: raise ValueError("Harmony prompt produced no tokens") input_ids = torch.tensor([token_list], dtype=torch.long, device=device) attention_mask = torch.ones_like(input_ids, dtype=torch.long, device=device) inputs = {"input_ids": input_ids, "attention_mask": attention_mask} prompt_len = input_ids.shape[1] else: enc = tokenizer(full_prompt, return_tensors="pt") inputs = {k: v.to(device) for k, v in enc.items()} if "attention_mask" not in inputs: inputs["attention_mask"] = torch.ones_like(inputs["input_ids"], dtype=torch.long, device=device) prompt_len = int(inputs["input_ids"].shape[1]) # Harmony stop via stopping criteria sc = StoppingCriteriaList([StopOnTokens(HARMONY_STOP_IDS)]) if (HARMONY_AVAILABLE and HARMONY_STOP_IDS) else None out_ids = model.generate( **inputs, do_sample=bool(gen_kwargs.get("do_sample", True)), temperature=float(gen_kwargs.get("temperature", 0.7)), top_p=float(gen_kwargs.get("top_p", 0.9)), top_k=(int(gen_kwargs.get("top_k")) if gen_kwargs.get("top_k") and int(gen_kwargs.get("top_k")) > 0 else None), max_new_tokens=int(gen_kwargs.get("max_new_tokens", MAX_DEF)), pad_token_id=model.config.pad_token_id, eos_token_id=tokenizer.eos_token_id, bad_words_ids=bad_words_ids, stopping_criteria=sc, repetition_penalty=float(gen_kwargs.get("repetition_penalty", 1.15)), no_repeat_ngram_size=int(gen_kwargs.get("no_repeat_ngram_size", 6)), ) out_list = out_ids[0].tolist() gen_ids = out_list[prompt_len:] # Truncate at first Harmony stop token if present if HARMONY_AVAILABLE and HARMONY_STOP_IDS: for sid in HARMONY_STOP_IDS: if sid in gen_ids: gen_ids = gen_ids[:gen_ids.index(sid)] break # Parse channels if HARMONY_AVAILABLE: try: channels = parse_harmony_response(gen_ids) except Exception: decoded = tokenizer.decode(gen_ids, skip_special_tokens=False) channels = {"final": extract_final_channel_fallback(decoded), "raw": decoded} else: decoded = tokenizer.decode(gen_ids, skip_special_tokens=False) channels = {"final": extract_final_channel_fallback(decoded), "raw": decoded} # Small previews (avoid flooding logs/UI) preview = { "prompt_len": int(prompt_len), "stop_ids": list(HARMONY_STOP_IDS) if HARMONY_AVAILABLE else [], "gen_len": int(len(gen_ids)), "gen_ids_head": gen_ids[:48], "decoded_head": tokenizer.decode(gen_ids[:256], skip_special_tokens=False), "channels": channels, } return preview except Exception as e: return {"error": f"{type(e).__name__}: {e}"} finally: try: del model except Exception: pass gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() # ----------------------- # Gradio handlers # ----------------------- def generate_response(message: str, history: List[List[str]], system_prompt: str, temperature: float, top_p: float, top_k: int, max_new_tokens: int, do_sample: bool, seed: Optional[int], rose_enable: bool, rose_alpha: float, rose_score: Optional[float], rose_tokens: str, rose_json: str, show_thinking: bool = False, reasoning_effort: str = "high") -> str: """ Generate response with proper CoT handling using Harmony format. """ try: # Build message list messages = [{"role": "system", "content": system_prompt or SYSTEM_DEF}] # Add history if history: for turn in history: if isinstance(turn, (list, tuple)) and len(turn) >= 2: user_msg, assistant_msg = turn[0], turn[1] if user_msg: messages.append({"role": "user", "content": str(user_msg)}) if assistant_msg: messages.append({"role": "assistant", "content": str(assistant_msg)}) # Add current message messages.append({"role": "user", "content": str(message)}) # Create Harmony-formatted prompt if HARMONY_AVAILABLE: prompt = create_harmony_prompt(messages, reasoning_effort) # returns token IDs else: # Fallback to tokenizer template (string) prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) # Build Rose map if enabled rose_map: Optional[Dict[str, float]] = None if rose_enable: rose_map = {} tok_str = (rose_tokens or "").strip() if tok_str: for p in [p.strip() for p in tok_str.split(",") if p.strip()]: if ":" in p: k, v = p.split(":", 1) try: rose_map[k.strip()] = float(v) except: pass if rose_json: try: j = json.loads(rose_json) if isinstance(j, dict): for k, v in j.items(): try: rose_map[str(k)] = float(v) except: pass except: pass if not rose_map: rose_map = None # Generate with model channels = zerogpu_generate( prompt, { "do_sample": bool(do_sample), "temperature": float(temperature), "top_p": float(top_p), "top_k": int(top_k) if top_k > 0 else None, "max_new_tokens": int(max_new_tokens), }, rose_map, float(rose_alpha), float(rose_score) if rose_score is not None else None, int(seed) if seed is not None else None, ) # Format response if show_thinking: # Show all channels response = "## Chain of Thought:\n\n" for channel, content in channels.items(): if channel != "final" and content: response += f"### {channel.capitalize()} Channel:\n{content}\n\n" response += f"### Final Response:\n{channels.get('final', 'No final response generated')}" return response else: # Just show the final response return channels.get("final", "No final response generated") except Exception as e: return f"[Error] {type(e).__name__}: {str(e)}" # ----------------------- # Extra handler: Harmony Inspector wrapper # ----------------------- def harmony_inspect_handler(user_prompt: str, system_prompt: str, reasoning_effort: str): try: msgs = [{"role": "system", "content": system_prompt or SYSTEM_DEF}, {"role": "user", "content": user_prompt or "What is 2+2?"}] prompt = create_harmony_prompt(msgs, reasoning_effort) return zerogpu_generate_debug( prompt, {"do_sample": True, "temperature": 0.7, "top_p": 0.9, "top_k": 0, "max_new_tokens": MAX_DEF} ) except Exception as e: return {"error": f"{type(e).__name__}: {e}"} # ----------------------- # UI # ----------------------- with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown( """ # Mirel – Harmony Chain-of-Thought Inference OSS-20B model using Harmony format with thinking channels. The model thinks through problems in internal channels before providing a final response. **Note:** Install `openai-harmony` for full Harmony support: `pip install openai-harmony` """ ) with gr.Row(): system_prompt = gr.Textbox( label="System Prompt", value=SYSTEM_DEF, lines=2 ) with gr.Accordion("Generation Settings", open=False): with gr.Row(): temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="Temperature") top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.01, label="Top-p") top_k = gr.Slider(0, 200, value=0, step=1, label="Top-k (0=disabled)") with gr.Row(): max_new = gr.Slider(16, 4096, value=MAX_DEF, step=16, label="Max new tokens") do_sample = gr.Checkbox(value=True, label="Do sample") seed = gr.Number(value=None, label="Seed (optional)", precision=0) with gr.Row(): reasoning_effort = gr.Radio( choices=["low", "medium", "high"], value="high", label="Reasoning Effort", info="How much thinking the model should do" ) show_thinking = gr.Checkbox( value=False, label="Show thinking channels", info="Display all internal reasoning channels" ) with gr.Accordion("Rose Guidance (Optional)", open=False): gr.Markdown("Fine-tune generation with token biases") with gr.Row(): rose_enable = gr.Checkbox(value=False, label="Enable Rose bias") rose_alpha = gr.Slider(0.0, 5.0, value=1.0, step=0.05, label="Alpha (strength)") rose_score = gr.Slider(0.0, 1.0, value=1.0, step=0.01, label="Score multiplier") rose_tokens = gr.Textbox( label="Token:weight pairs", placeholder="example:1.5, test:-0.5", value="" ) rose_json = gr.Textbox( label="JSON weights", placeholder='{"token": 1.0, "another": -0.5}', value="" ) # --- Harmony Inspector UI --- with gr.Accordion("Harmony Inspector", open=False): debug_prompt = gr.Textbox(label="Debug prompt", value="What is 2+2? Reply with just the number.") run_debug = gr.Button("Run Harmony Inspect") debug_out = gr.JSON(label="Parsed Harmony output", value={}) run_debug.click(harmony_inspect_handler, inputs=[debug_prompt, system_prompt, reasoning_effort], outputs=[debug_out]) # Chat interface - using only valid parameters chat = gr.ChatInterface( fn=generate_response, type="messages", additional_inputs=[ system_prompt, temperature, top_p, top_k, max_new, do_sample, seed, rose_enable, rose_alpha, rose_score, rose_tokens, rose_json, show_thinking, reasoning_effort ], title="Chat with Mirel", description="A chain-of-thought model using Harmony format", examples=[ ["Hello! Can you introduce yourself?"], ["What is the capital of France?"], ["Explain quantum computing in simple terms"], ["Solve: If a train travels 120 miles in 2 hours, what is its average speed?"], ], cache_examples=False, ) gr.Markdown( """ --- ### Configuration: - **Model**: Set `MODEL_ID` env var (default: openai/gpt-oss-20b) - **Adapter**: Set `ADAPTER_ID` and optionally `ADAPTER_SUBFOLDER` - **Auth**: Set `HF_TOKEN` in Space secrets for private model access - **Harmony**: Install with `pip install openai-harmony` for proper channel support The model uses Harmony format with thinking channels (`thinking`, `analysis`, `final`). """ ) if __name__ == "__main__": demo.queue(max_size=8 if ZEROGPU else 32).launch( server_name="0.0.0.0", server_port=7860, share=False )