""" Mirel Harmony Inference – HF Space (Gradio) ZeroGPU-ready, Harmony formatting, bf16 mode for GPT-OSS-20B Proper LoRA adapter loading (MX format not available in stable releases) Single file: app.py """ from __future__ import annotations # ===== MAIN IMPORTS ===== import os, gc, json, warnings, traceback import subprocess, sys from dataclasses import dataclass from typing import List, Dict, Optional, Any, Union from datetime import datetime import gradio as gr import spaces # required for ZeroGPU from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig import numpy as np # IMPORTANT: Don't import torch at module level for ZeroGPU # It will be imported inside GPU-decorated functions # Suppress warnings warnings.filterwarnings("ignore", message=".*microscaling.*") warnings.filterwarnings("ignore", message=".*mx.*") # Import Harmony components try: from openai_harmony import ( Author, Conversation, HarmonyEncodingName, Message, Role, SystemContent, DeveloperContent, load_harmony_encoding, ReasoningEffort ) HARMONY_AVAILABLE = True print("✓ OpenAI Harmony loaded successfully") except ImportError: print("⚠ openai_harmony not installed. Install with: pip install openai-harmony") HARMONY_AVAILABLE = False # Import PEFT for LoRA support try: from peft import PeftModel, PeftConfig, LoraConfig, get_peft_model _HAS_PEFT = True print("✓ PEFT loaded successfully") except Exception: _HAS_PEFT = False print("⚠ PEFT not available. Install with: pip install peft") # Note: MX format requires unreleased Triton features # We'll use bf16 mode which works fine for inference _HAS_TRITON_KERNELS = False USE_MX_FORMAT = False print("Note: Using bf16 mode (MX format requires unreleased Triton features)") print("This will work fine but use more memory than native MX format") # ===== CONFIGURATION ===== MODEL_ID = os.getenv("MODEL_ID", "openai/gpt-oss-20b") ADAPTER_ID = os.getenv("ADAPTER_ID", "AbstractPhil/mirel-gpt-oss-20b") ADAPTER_SUBFOLDER = os.getenv("ADAPTER_SUBFOLDER", "checkpoints/checkpoint-516") ATTN_IMPL = os.getenv("ATTN_IMPL", "eager") SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT", "You are Mirel, a memory-stable symbolic assistant.") MAX_NEW_TOKENS = int(os.getenv("MAX_NEW_TOKENS", "512")) ZEROGPU = os.getenv("ZEROGPU", os.getenv("ZERO_GPU", "1")) == "1" MERGE_ADAPTER = os.getenv("MERGE_ADAPTER", "0") == "1" # Detect if using GPT-OSS model IS_GPT_OSS = "gpt-oss" in MODEL_ID.lower() USE_MX_FORMAT = IS_GPT_OSS and _HAS_TRITON_KERNELS # Harmony channels for chain-of-thought REQUIRED_CHANNELS = ["analysis", "commentary", "final"] # HF Authentication HF_TOKEN = ( os.getenv("HF_TOKEN") or os.getenv("HUGGING_FACE_HUB_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN") or os.getenv("HF_ACCESS_TOKEN") ) def _hf_login(): """Login to HuggingFace Hub.""" if HF_TOKEN: try: from huggingface_hub import login, whoami login(token=HF_TOKEN, add_to_git_credential=True) try: user = whoami(token=HF_TOKEN) print(f"✓ Logged in as: {user.get('name', user.get('id', 'unknown'))}") except: print("✓ HF login successful") except Exception as e: print(f"⚠ HF login failed: {e}") else: print("⚠ No HF_TOKEN found in environment") # Login before loading models _hf_login() # Disable tokenizer parallelism warning os.environ["TOKENIZERS_PARALLELISM"] = "false" # ===== LOAD TOKENIZER ===== try: tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN) print(f"✓ Tokenizer loaded from {MODEL_ID}") except Exception as e: print(f"✗ Failed to load tokenizer: {e}") raise # ===== HARMONY SETUP ===== if HARMONY_AVAILABLE: harmony_encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS) HARMONY_STOP_IDS = harmony_encoding.stop_tokens_for_assistant_actions() else: harmony_encoding = None HARMONY_STOP_IDS = [] # ===== MODEL LOADING WITH MX FORMAT SUPPORT ===== def detect_mx_format(model) -> bool: """Check if model is using native MX format.""" if not hasattr(model, 'model') or not hasattr(model.model, 'layers'): return False try: first_layer = model.model.layers[0] if hasattr(first_layer, 'block_sparse_moe'): expert = first_layer.block_sparse_moe.experts[0] if hasattr(expert, 'w1'): # Check for MX format scale tensors return hasattr(expert.w1, 'scales') except: pass return False def load_base_model(device_map: Optional[str] = "auto") -> AutoModelForCausalLM: """Load the base model with proper MX format handling.""" import torch # Import torch here for ZeroGPU compatibility print(f"\n{'='*50}") print(f"Loading model: {MODEL_ID}") print(f"MX Format Available: {_HAS_TRITON_KERNELS}") print(f"{'='*50}\n") # Load config to check model type config = AutoConfig.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN) # Build loading kwargs load_kwargs = { "trust_remote_code": True, "device_map": device_map, "low_cpu_mem_usage": True, "token": HF_TOKEN, "attn_implementation": ATTN_IMPL if device_map != "cpu" else "eager", } if IS_GPT_OSS: if _HAS_TRITON_KERNELS: print("→ Loading with native MX format support") # For MX format, let the model handle its own dtype load_kwargs["torch_dtype"] = "auto" # Set environment variable to ensure MX is used import os os.environ["FORCE_MX_QUANTIZATION"] = "1" else: print("⚠ No triton_kernels - falling back to bf16 (dequantized)") print(" This will likely cause LoRA compatibility issues!") # Load the model - torch imported inside function import torch load_kwargs["torch_dtype"] = torch.bfloat16 # Explicitly disable MX import os os.environ["FORCE_MX_QUANTIZATION"] = "0" else: # Non-GPT-OSS models import torch load_kwargs["torch_dtype"] = torch.bfloat16 try: # Load the model model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **load_kwargs) # Verify format print(f"Model loaded - dtype: {next(model.parameters()).dtype}") if IS_GPT_OSS: is_mx = detect_mx_format(model) if is_mx: print("✓ Confirmed: Using native MX format") else: print("⚠ Model dequantized to bf16 - LoRA may fail") # Set model config if getattr(model.config, "pad_token_id", None) is None: model.config.pad_token_id = tokenizer.pad_token_id or tokenizer.eos_token_id model.config.use_cache = True return model except Exception as e: if "ragged_tma" in str(e): print("\n" + "="*60) print("ERROR: Triton version incompatibility detected!") print("The model requires a specific Triton version with ragged_tma support.") print("\nTo fix this, run:") print("pip uninstall -y triton triton_kernels") print("pip install --index-url https://download.pytorch.org/whl/nightly/cu121 triton") print("pip install git+https://github.com/triton-lang/triton.git@main#subdirectory=python/triton_kernels") print("="*60 + "\n") # Try to load without MX as fallback print("Attempting to load model without MX format...") import torch load_kwargs["torch_dtype"] = torch.bfloat16 os.environ["FORCE_MX_QUANTIZATION"] = "0" model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **load_kwargs) print("✓ Model loaded in bf16 mode (degraded performance)") return model else: raise def load_lora_adapter(model, adapter_id: str, subfolder: Optional[str] = None): """Load and attach LoRA adapter for bf16 model.""" if not _HAS_PEFT: raise RuntimeError("PEFT is required for LoRA adapters") print(f"\n{'='*50}") print(f"Loading LoRA: {adapter_id}") if subfolder: print(f"Subfolder: {subfolder}") print(f"{'='*50}\n") # Prepare kwargs for PEFT peft_kwargs = {"token": HF_TOKEN, "is_trainable": False} if subfolder: peft_kwargs["subfolder"] = subfolder try: # Load adapter configuration peft_config = PeftConfig.from_pretrained(adapter_id, **peft_kwargs) print(f"LoRA config: r={peft_config.r}, alpha={peft_config.lora_alpha}") # Load the adapter model = PeftModel.from_pretrained(model, adapter_id, **peft_kwargs) # Warning about potential mismatch if IS_GPT_OSS: print("⚠ WARNING: LoRA may have been trained on MX format") print(" Model is running in bf16 mode - there may be compatibility issues") print(" If generation quality is poor, the LoRA may need retraining on bf16") print("✓ LoRA adapter loaded") # Optionally merge adapter if MERGE_ADAPTER and hasattr(model, 'merge_and_unload'): print("Merging adapter into base model...") model = model.merge_and_unload() print("✓ Adapter merged") return model except Exception as e: print(f"✗ Failed to load LoRA: {e}") print("Continuing with base model only") return model # ===== HARMONY FORMATTING ===== def create_harmony_prompt(messages: List[Dict[str, str]], reasoning_effort: str = "high"): """Create Harmony-formatted prompt.""" if not HARMONY_AVAILABLE or not harmony_encoding: # Fallback to chat template if messages and messages[0].get("role") != "system": messages = [{"role": "system", "content": SYSTEM_PROMPT}] + messages return tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) # Map reasoning effort effort_map = { "low": ReasoningEffort.LOW, "medium": ReasoningEffort.MEDIUM, "high": ReasoningEffort.HIGH } effort = effort_map.get(reasoning_effort.lower(), ReasoningEffort.HIGH) # Build Harmony conversation system_content = ( SystemContent.new() .with_model_identity("You are ChatGPT, a large language model trained by OpenAI.") .with_reasoning_effort(effort) .with_conversation_start_date(datetime.now().strftime("%Y-%m-%d")) .with_knowledge_cutoff("2024-06") .with_required_channels(REQUIRED_CHANNELS) ) # Extract system prompt sys_text = SYSTEM_PROMPT rest = messages or [] if rest and rest[0].get("role") == "system": sys_text = rest[0].get("content", SYSTEM_PROMPT) rest = rest[1:] # Build messages harmony_messages = [ Message.from_role_and_content(Role.SYSTEM, system_content), Message.from_role_and_content( Role.DEVELOPER, DeveloperContent.new().with_instructions(sys_text) ) ] for msg in rest: role = msg.get("role") content = msg.get("content", "") if role == "user": harmony_messages.append(Message.from_role_and_content(Role.USER, content)) elif role == "assistant": harmony_messages.append( Message.from_role_and_content(Role.ASSISTANT, content).with_channel("final") ) # Render to token IDs convo = Conversation.from_messages(harmony_messages) return harmony_encoding.render_conversation_for_completion(convo, Role.ASSISTANT) def parse_harmony_response(tokens: List[int]) -> Dict[str, str]: """Parse Harmony response tokens into channels.""" if not HARMONY_AVAILABLE or not harmony_encoding: text = tokenizer.decode(tokens, skip_special_tokens=False) return {"final": extract_final_channel(text), "raw": text} try: # Parse using Harmony parsed = harmony_encoding.parse_messages_from_completion_tokens(tokens, Role.ASSISTANT) channels = {} for msg in parsed: channel = getattr(msg, 'channel', 'final') if channel not in channels: channels[channel] = "" # Extract text content content = msg.content if isinstance(content, list): text = "".join([getattr(part, "text", str(part)) for part in content]) else: text = getattr(content, "text", str(content)) channels[channel] += text # Ensure final channel exists if "final" not in channels: channels["final"] = " ".join(channels.values()) return channels except Exception as e: print(f"Harmony parsing failed: {e}") text = tokenizer.decode(tokens, skip_special_tokens=False) return {"final": extract_final_channel(text), "raw": text} def extract_final_channel(text: str) -> str: """Extract final channel from raw text.""" # Look for <|channel|>final<|message|> if "<|channel|>final<|message|>" in text: parts = text.split("<|channel|>final<|message|>") if len(parts) > 1: final = parts[-1] # Truncate at next marker for marker in ["<|channel|>", "<|end|>", "<|return|>"]: if marker in final: final = final.split(marker)[0] return final.strip() # Fallback: return cleaned text for marker in ["<|channel|>", "<|message|>", "<|end|>", "<|return|>"]: text = text.replace(marker, " ") return text.strip() # ===== GENERATION ===== @spaces.GPU(duration=120) def generate_on_gpu( prompt, temperature: float, top_p: float, top_k: int, max_new_tokens: int, do_sample: bool, repetition_penalty: float, seed: Optional[int] ) -> Dict[str, str]: """Run generation on GPU.""" import torch # Import torch inside GPU function for ZeroGPU try: # Set seed if provided if seed is not None: torch.manual_seed(int(seed)) # Load model print("\nLoading model for generation...") model = load_base_model("auto") # Load LoRA if specified if ADAPTER_ID: model = load_lora_adapter(model, ADAPTER_ID, ADAPTER_SUBFOLDER) model.eval() # Prepare inputs import torch # Make sure torch is available device = next(model.parameters()).device if HARMONY_AVAILABLE and isinstance(prompt, list): # Harmony returns token IDs input_ids = torch.tensor([prompt], dtype=torch.long, device=device) else: # String prompt inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) attention_mask = torch.ones_like(input_ids) prompt_len = input_ids.shape[1] # Generate print("Generating response...") with torch.no_grad(): outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k if top_k > 0 else None, do_sample=do_sample, repetition_penalty=repetition_penalty, pad_token_id=model.config.pad_token_id, eos_token_id=HARMONY_STOP_IDS if HARMONY_STOP_IDS else tokenizer.eos_token_id, no_repeat_ngram_size=3, ) # Extract generated tokens gen_tokens = outputs[0][prompt_len:].tolist() # Truncate at stop tokens for stop_id in HARMONY_STOP_IDS: if stop_id in gen_tokens: gen_tokens = gen_tokens[:gen_tokens.index(stop_id)] break # Parse response channels = parse_harmony_response(gen_tokens) return channels except Exception as e: error_msg = f"Generation failed: {str(e)}\n{traceback.format_exc()}" print(error_msg) return {"final": f"Error: {str(e)}", "raw": error_msg} finally: # Cleanup import torch if 'model' in locals(): del model gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() # ===== GRADIO INTERFACE ===== def chat_response( message: str, history: List[List[str]], system_prompt: str, temperature: float, top_p: float, top_k: int, max_new_tokens: int, do_sample: bool, repetition_penalty: float, seed: Optional[int], reasoning_effort: str, show_thinking: bool ) -> str: """Handle chat interaction.""" try: # Build conversation messages = [{"role": "system", "content": system_prompt or SYSTEM_PROMPT}] # Add history for turn in history or []: if isinstance(turn, (list, tuple)) and len(turn) >= 2: user_msg, assistant_msg = turn[0], turn[1] if user_msg: messages.append({"role": "user", "content": str(user_msg)}) if assistant_msg: messages.append({"role": "assistant", "content": str(assistant_msg)}) # Add current message messages.append({"role": "user", "content": message}) # Create prompt prompt = create_harmony_prompt(messages, reasoning_effort) # Generate channels = generate_on_gpu( prompt, temperature, top_p, top_k, max_new_tokens, do_sample, repetition_penalty, seed ) # Format response if show_thinking and len(channels) > 1: response = "## Chain of Thought:\n\n" for channel, content in channels.items(): if channel != "final" and content: response += f"### {channel.capitalize()}:\n{content}\n\n" response += f"### Final Response:\n{channels.get('final', 'No response generated')}" else: response = channels.get("final", "No response generated") return response except Exception as e: return f"Error: {str(e)}" # ===== BUILD UI ===== with gr.Blocks(theme=gr.themes.Soft(), title="Mirel") as demo: # Header with status status_mx = "✅ MX Format" if _HAS_TRITON_KERNELS else "❌ No MX Support" status_harmony = "✅ Harmony" if HARMONY_AVAILABLE else "❌ No Harmony" gr.Markdown(f""" # 🤖 Mirel – Chain-of-Thought Assistant **Model:** `{MODEL_ID}` | **Adapter:** `{ADAPTER_ID or 'None'}` **Status:** {status_mx} | {status_harmony} | {"✅ ZeroGPU" if ZEROGPU else "CPU Mode"} {''' ⚠️ **WARNING: MX Format Support Missing!** Install with: `pip install git+https://github.com/triton-lang/triton.git@main#subdirectory=python/triton_kernels` ''' if IS_GPT_OSS and not _HAS_TRITON_KERNELS else ''} """) # System prompt system_prompt = gr.Textbox( label="System Prompt", value=SYSTEM_PROMPT, lines=2 ) # Settings with gr.Accordion("⚙️ Generation Settings", open=False): with gr.Row(): temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="Temperature") top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="Top-p") top_k = gr.Slider(0, 200, value=50, step=1, label="Top-k") with gr.Row(): max_new_tokens = gr.Slider(16, 2048, value=MAX_NEW_TOKENS, step=16, label="Max tokens") repetition_penalty = gr.Slider(1.0, 1.5, value=1.1, step=0.01, label="Repetition penalty") seed = gr.Number(value=None, label="Seed (optional)", precision=0) with gr.Row(): do_sample = gr.Checkbox(value=True, label="Sample") show_thinking = gr.Checkbox(value=False, label="Show thinking channels") reasoning_effort = gr.Radio( ["low", "medium", "high"], value="high", label="Reasoning effort" ) # Chat interface chat = gr.ChatInterface( fn=chat_response, additional_inputs=[ system_prompt, temperature, top_p, top_k, max_new_tokens, do_sample, repetition_penalty, seed, reasoning_effort, show_thinking ], title=None, examples=[ ["Hello! Can you introduce yourself?"], ["What's the capital of France?"], ["Explain quantum computing simply"], ["Write a haiku about coding"], ], cache_examples=False, ) # Footer gr.Markdown(""" --- 💡 **Tips:** - Enable "Show thinking channels" to see the model's reasoning process - Adjust "Reasoning effort" for faster responses (low) or better quality (high) - The model uses MX format on H200 GPUs for optimal performance """) # ===== LAUNCH ===== if __name__ == "__main__": print("\n" + "="*60) print("MIREL READY TO LAUNCH") print(f"Model: {MODEL_ID}") print(f"Adapter: {ADAPTER_ID or 'None'}") print(f"MX Format: {'ENABLED' if _HAS_TRITON_KERNELS else 'DISABLED'}") print(f"Harmony: {'ENABLED' if HARMONY_AVAILABLE else 'DISABLED'}") print("="*60 + "\n") demo.queue(max_size=10).launch( server_name="0.0.0.0", server_port=7860, share=False )