chore: Add function to plot spectra in app.py
Browse files- app.py +65 -1
- requirements.txt +1 -0
- scripts/plotting.py +77 -0
app.py
CHANGED
|
@@ -3,6 +3,9 @@ import queue
|
|
| 3 |
|
| 4 |
import paho.mqtt.client as mqtt
|
| 5 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Initialize Streamlit app
|
| 8 |
st.title("Light-mixing Control Panel")
|
|
@@ -96,12 +99,72 @@ def send_and_receive(client, command_topic, msg, queue_timeout=60):
|
|
| 96 |
return sensor_data
|
| 97 |
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
# Publish button
|
| 100 |
-
if st.button("Send RGB Command"
|
| 101 |
if not PICO_ID or not HIVEMQ_HOST or not HIVEMQ_USERNAME or not HIVEMQ_PASSWORD:
|
| 102 |
st.error("Please enter all required fields.")
|
| 103 |
else:
|
| 104 |
st.session_state.locked = True
|
|
|
|
| 105 |
|
| 106 |
client = get_paho_client(
|
| 107 |
sensor_data_topic,
|
|
@@ -119,6 +182,7 @@ if st.button("Send RGB Command") and not st.session_state.locked:
|
|
| 119 |
|
| 120 |
st.session_state.locked = False
|
| 121 |
st.success("Command sent successfully!")
|
|
|
|
| 122 |
st.write("Sensor Data Received:", sensor_data)
|
| 123 |
|
| 124 |
# Display received messages
|
|
|
|
| 3 |
|
| 4 |
import paho.mqtt.client as mqtt
|
| 5 |
import streamlit as st
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import numpy as np
|
| 8 |
+
from matplotlib.patches import Rectangle
|
| 9 |
|
| 10 |
# Initialize Streamlit app
|
| 11 |
st.title("Light-mixing Control Panel")
|
|
|
|
| 99 |
return sensor_data
|
| 100 |
|
| 101 |
|
| 102 |
+
# Function to plot spectra
|
| 103 |
+
def plot_spectra(sensor_data):
|
| 104 |
+
"""https://chatgpt.com/share/210d2fee-ca64-45a5-866e-e6df6e56bd1c"""
|
| 105 |
+
wavelengths = np.array([410, 440, 470, 510, 550, 583, 620, 670])
|
| 106 |
+
intensities = np.array(
|
| 107 |
+
[
|
| 108 |
+
sensor_data["ch410"],
|
| 109 |
+
sensor_data["ch440"],
|
| 110 |
+
sensor_data["ch470"],
|
| 111 |
+
sensor_data["ch510"],
|
| 112 |
+
sensor_data["ch550"],
|
| 113 |
+
sensor_data["ch583"],
|
| 114 |
+
sensor_data["ch620"],
|
| 115 |
+
sensor_data["ch670"],
|
| 116 |
+
]
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 120 |
+
|
| 121 |
+
num_points = 100 # for "fake" color bar effect
|
| 122 |
+
|
| 123 |
+
# Adding rectangles for color bar effect
|
| 124 |
+
dense_wavelengths = np.linspace(wavelengths.min(), wavelengths.max(), num_points)
|
| 125 |
+
rect_height = max(intensities) * 0.02 # Height of the rectangles
|
| 126 |
+
|
| 127 |
+
for dw in dense_wavelengths:
|
| 128 |
+
rect = Rectangle(
|
| 129 |
+
(
|
| 130 |
+
dw - (wavelengths.max() - wavelengths.min()) / num_points / 2,
|
| 131 |
+
-rect_height * 2,
|
| 132 |
+
),
|
| 133 |
+
(wavelengths.max() - wavelengths.min()) / num_points,
|
| 134 |
+
rect_height * 3,
|
| 135 |
+
color=plt.cm.rainbow(
|
| 136 |
+
(dw - wavelengths.min()) / (wavelengths.max() - wavelengths.min())
|
| 137 |
+
),
|
| 138 |
+
edgecolor="none",
|
| 139 |
+
)
|
| 140 |
+
ax.add_patch(rect)
|
| 141 |
+
|
| 142 |
+
# Main scatter plot
|
| 143 |
+
scatter = ax.scatter(
|
| 144 |
+
wavelengths, intensities, c=wavelengths, cmap="rainbow", edgecolor="k"
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
# Adding vertical lines from the x-axis to each point
|
| 148 |
+
for wavelength, intensity in zip(wavelengths, intensities):
|
| 149 |
+
ax.vlines(wavelength, 0, intensity, color="gray", linestyle="--", linewidth=1)
|
| 150 |
+
|
| 151 |
+
ax.set_xlim(wavelengths.min() - 10, wavelengths.max() + 10)
|
| 152 |
+
ax.set_ylim(0, max(intensities) + 10) # Ensure the lower y limit is 0
|
| 153 |
+
ax.set_xticks(wavelengths)
|
| 154 |
+
ax.set_xlabel("Wavelength (nm)")
|
| 155 |
+
ax.set_ylabel("Intensity")
|
| 156 |
+
ax.set_title("Spectral Intensity vs. Wavelength")
|
| 157 |
+
|
| 158 |
+
plt.show()
|
| 159 |
+
|
| 160 |
+
|
| 161 |
# Publish button
|
| 162 |
+
if st.button("Send RGB Command", disabled=st.session_state.locked):
|
| 163 |
if not PICO_ID or not HIVEMQ_HOST or not HIVEMQ_USERNAME or not HIVEMQ_PASSWORD:
|
| 164 |
st.error("Please enter all required fields.")
|
| 165 |
else:
|
| 166 |
st.session_state.locked = True
|
| 167 |
+
st.success("Please wait while the command is sent...")
|
| 168 |
|
| 169 |
client = get_paho_client(
|
| 170 |
sensor_data_topic,
|
|
|
|
| 182 |
|
| 183 |
st.session_state.locked = False
|
| 184 |
st.success("Command sent successfully!")
|
| 185 |
+
plot_spectra(sensor_data)
|
| 186 |
st.write("Sensor Data Received:", sensor_data)
|
| 187 |
|
| 188 |
# Display received messages
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
paho-mqtt
|
|
|
|
| 2 |
streamlit
|
|
|
|
| 1 |
paho-mqtt
|
| 2 |
+
matplotlib
|
| 3 |
streamlit
|
scripts/plotting.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""https://chatgpt.com/share/210d2fee-ca64-45a5-866e-e6df6e56bd1c"""
|
| 2 |
+
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import numpy as np
|
| 5 |
+
from matplotlib.patches import Rectangle
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Function to plot spectra
|
| 9 |
+
def plot_spectra(sensor_data, num_points=100):
|
| 10 |
+
wavelengths = np.array([410, 440, 470, 510, 550, 583, 620, 670])
|
| 11 |
+
intensities = np.array(
|
| 12 |
+
[
|
| 13 |
+
sensor_data["ch410"],
|
| 14 |
+
sensor_data["ch440"],
|
| 15 |
+
sensor_data["ch470"],
|
| 16 |
+
sensor_data["ch510"],
|
| 17 |
+
sensor_data["ch550"],
|
| 18 |
+
sensor_data["ch583"],
|
| 19 |
+
sensor_data["ch620"],
|
| 20 |
+
sensor_data["ch670"],
|
| 21 |
+
]
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 25 |
+
|
| 26 |
+
# Adding rectangles for color bar effect
|
| 27 |
+
dense_wavelengths = np.linspace(wavelengths.min(), wavelengths.max(), num_points)
|
| 28 |
+
rect_height = max(intensities) * 0.02 # Height of the rectangles
|
| 29 |
+
|
| 30 |
+
for dw in dense_wavelengths:
|
| 31 |
+
rect = Rectangle(
|
| 32 |
+
(
|
| 33 |
+
dw - (wavelengths.max() - wavelengths.min()) / num_points / 2,
|
| 34 |
+
-rect_height * 2,
|
| 35 |
+
),
|
| 36 |
+
(wavelengths.max() - wavelengths.min()) / num_points,
|
| 37 |
+
rect_height * 3,
|
| 38 |
+
color=plt.cm.rainbow(
|
| 39 |
+
(dw - wavelengths.min()) / (wavelengths.max() - wavelengths.min())
|
| 40 |
+
),
|
| 41 |
+
edgecolor="none",
|
| 42 |
+
)
|
| 43 |
+
ax.add_patch(rect)
|
| 44 |
+
|
| 45 |
+
# Main scatter plot
|
| 46 |
+
scatter = ax.scatter(
|
| 47 |
+
wavelengths, intensities, c=wavelengths, cmap="rainbow", edgecolor="k"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Adding vertical lines from the x-axis to each point
|
| 51 |
+
for wavelength, intensity in zip(wavelengths, intensities):
|
| 52 |
+
ax.vlines(wavelength, 0, intensity, color="gray", linestyle="--", linewidth=1)
|
| 53 |
+
|
| 54 |
+
ax.set_xlim(wavelengths.min() - 10, wavelengths.max() + 10)
|
| 55 |
+
ax.set_ylim(0, max(intensities) + 10) # Ensure the lower y limit is 0
|
| 56 |
+
ax.set_xticks(wavelengths)
|
| 57 |
+
ax.set_xlabel("Wavelength (nm)")
|
| 58 |
+
ax.set_ylabel("Intensity")
|
| 59 |
+
ax.set_title("Spectral Intensity vs. Wavelength")
|
| 60 |
+
|
| 61 |
+
plt.show()
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# Simulated sensor data
|
| 65 |
+
sensor_data = {
|
| 66 |
+
"ch410": 10,
|
| 67 |
+
"ch440": 20,
|
| 68 |
+
"ch470": 15,
|
| 69 |
+
"ch510": 30,
|
| 70 |
+
"ch550": 25,
|
| 71 |
+
"ch583": 40,
|
| 72 |
+
"ch620": 35,
|
| 73 |
+
"ch670": 50,
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
# Run the plot function with 100 points for the rectangles
|
| 77 |
+
plot_spectra(sensor_data, num_points=100)
|