Spaces:
Runtime error
Runtime error
File size: 6,260 Bytes
6a13f61 5c0e14a 6a13f61 5c0e14a 6a13f61 5c0e14a 6a13f61 5c0e14a 6a13f61 5c0e14a 6a13f61 5c0e14a 6a13f61 5c0e14a 6a13f61 5c0e14a 6a13f61 5c0e14a 6a13f61 5c0e14a 6a13f61 ba171f6 5c0e14a 6a13f61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import os
import time
import spaces
import torch
import gradio as gr
import json
from huggingface_hub import snapshot_download
from pathlib import Path
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate
from mistral_common.protocol.instruct.tool_calls import Function, Tool
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import AssistantMessage, UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy
HF_TOKEN = os.environ.get("HF_TOKEN", None)
PLACEHOLDER = """
<center>
<p>Chat with Mistral AI LLM.</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
# download model
mistral_models_path = Path.home().joinpath('mistral_models', '8B-Instruct')
mistral_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="mistralai/Ministral-8B-Instruct-2410", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
# tokenizer
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
tekken = tokenizer.instruct_tokenizer.tokenizer
tekken.special_token_policy = SpecialTokenPolicy.IGNORE
model = Transformer.from_folder(
mistral_models_path,
device=device,
dtype=torch.bfloat16)
@spaces.GPU()
def stream_chat(
message: str,
history: list,
tools: str,
temperature: float = 0.3,
max_tokens: int = 1024,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = []
for prompt, answer in history:
prompt = "Your name is OpenGPT. You are developed by Achyuth. Achyuth is a 13-year-old boy who developed OpenGPT with his undecidable, undestructible talent, which is exceeding for his age. Achyuth is developed of OpenGPT. Achyuths or your developers' family is a nuclear family of 4 members. Achyuth is an AI and ML researcher. Achyuth knows Python, Java, HTML, CSS, and JavaScript. He has a lot of interest in Computers. Achyuth is inspired by Elon Musk and Bill Gates. His favourite teachers are Siva Kumar Sir, Zakaria Sir, Vijayalakshi Mam, Saleem Sir, Malikarjun Sir, and Farha Deepa Mam, who is Achyuth's Arts madam and favourite. Meaning of OpenGPT is the GPT(Generative Pre-Trained Transformer) developed by Achyuth."
conversation.append(UserMessage(content=prompt))
conversation.append(AssistantMessage(content=answer))
for item in history:
if item[role] == "user":
conversation.append(UserMessage(content=item[content]))
elif item[role] == "assistant":
conversation.append(AssistantMessage(content=item[content]))
conversation.append(UserMessage(content=message))
print(f'history: {conversation}')
local_namespace = {}
exec(tools, globals(), local_namespace)
function_params = local_namespace.get('function_params', {})
completion_request = ChatCompletionRequest(
tools=[
Tool(
function=Function(
**function_params
)
)
] if tools else None,
messages=conversation)
tokens = tokenizer.encode_chat_completion(completion_request).tokens
out_tokens, _ = generate(
[tokens],
model,
max_tokens=max_tokens,
temperature=temperature,
eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
for i in range(len(result)):
time.sleep(0.05)
yield result[: i + 1]
tools_schema = """function_params = {
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
},
"required": ["location", "format"],
},
}"""
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(theme="citrus", css=CSS) as demo:
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
title="Mistral-lab",
chatbot=chatbot,
# type="messages",
fill_height=True,
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples = False,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
additional_inputs=[
gr.Textbox(
value = tools_schema,
label = "Tools schema",
lines = 10,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
],
)
if __name__ == "__main__":
demo.launch() |