Spaces:
Runtime error
Runtime error
File size: 11,075 Bytes
36e9c57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import gradio as gr
import os
import time
from typing import List, Tuple, Optional
from pathlib import Path
from threading import Thread
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader, TextLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.memory import ConversationBufferMemory
from langchain.docstore.document import Document
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
pipeline,
BitsAndBytesConfig,
StoppingCriteria,
StoppingCriteriaList,
)
import torch
EMBEDDING_MODEL = "BAAI/bge-m3"
MODEL_NAME = "agentica-org/DeepScaleR-1.5B-Preview"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MAX_CONTEXT_LENGTH = 8192
bnb_config = (
BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
if DEVICE == "cuda"
else None
)
class StopOnTokens(StoppingCriteria):
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
stop_ids = [0]
return input_ids[0][-1] in stop_ids
def validate_file_paths(file_paths: List[str]) -> List[str]:
valid_paths = []
for path in file_paths:
try:
if Path(path).exists() and Path(path).suffix.lower() in [".pdf", ".txt"]:
valid_paths.append(path)
except (OSError, PermissionError) as e:
print(f"File validation error: {str(e)}")
return valid_paths
def load_documents(file_paths: List[str]) -> List[Document]:
documents = []
valid_paths = validate_file_paths(file_paths)
if not valid_paths:
raise ValueError("No valid PDF/TXT files found!")
for path in valid_paths:
try:
if path.endswith(".pdf"):
loader = PyPDFLoader(path)
elif path.endswith(".txt"):
loader = TextLoader(path)
docs = loader.load()
if docs:
documents.extend(docs)
except Exception as e:
print(f"Error loading {Path(path).name}: {str(e)}")
if not documents:
raise ValueError("All documents failed to load.")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=128,
length_function=len,
add_start_index=True,
separators=["\n\n", "\n", "。", " ", ""],
)
return text_splitter.split_documents(documents)
def create_vector_store(documents: List[Document]) -> FAISS:
if not documents:
raise ValueError("No documents to index.")
embeddings = HuggingFaceEmbeddings(
model_name=EMBEDDING_MODEL,
model_kwargs={"device": DEVICE},
encode_kwargs={"normalize_embeddings": True},
)
return FAISS.from_documents(documents, embeddings)
def initialize_deepseek_model(
vector_store: FAISS,
temperature: float = 0.7,
max_new_tokens: int = 1024,
top_k: int = 50,
) -> ConversationalRetrievalChain:
try:
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME, use_fast=True, trust_remote_code=True
)
torch_dtype = torch.float16 if DEVICE == "cuda" else torch.float32
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
quantization_config=bnb_config,
device_map="auto" if DEVICE == "cuda" else None,
torch_dtype=torch_dtype,
trust_remote_code=True,
)
text_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_k=top_k,
repetition_penalty=1.1,
stopping_criteria=StoppingCriteriaList([StopOnTokens()]),
batch_size=1,
return_full_text=False,
)
llm = HuggingFacePipeline(
pipeline=text_pipeline, model_kwargs={"temperature": temperature}
)
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True,
output_key="answer",
input_key="question",
)
return ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vector_store.as_retriever(
search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10}
),
memory=memory,
chain_type="stuff",
return_source_documents=True,
verbose=False,
max_tokens_limit=MAX_CONTEXT_LENGTH,
)
except Exception as e:
raise RuntimeError(f"Model initialization failed: {str(e)}")
def format_sources(source_docs: List[Document]) -> List[Tuple[str, int]]:
sources = []
try:
for doc in source_docs[:3]:
content = doc.page_content.strip()[:500] + "..."
page = doc.metadata.get("page", 0) + 1
sources.append((content, page))
while len(sources) < 3:
sources.append(("No source found", 0))
except Exception:
return [("Source processing error", 0)] * 3
return sources
def handle_conversation(
qa_chain: Optional[ConversationalRetrievalChain],
message: str,
history: List[Tuple[str, str]],
) -> Tuple:
start_time = time.time()
if not qa_chain:
return None, "", history, *[("System Error", 0)] * 3
try:
response = qa_chain.invoke({"question": message, "chat_history": history})
answer = response["answer"].strip()
sources = format_sources(response.get("source_documents", []))
new_history = history + [(message, answer)]
elapsed = f"{(time.time() - start_time):.2f}s"
print(f"Response generated in {elapsed}")
return (
qa_chain,
"",
new_history,
*[item for sublist in sources for item in sublist],
)
except Exception as e:
error_msg = f"⚠️ Error: {str(e)}"
return qa_chain, "", history + [(message, error_msg)], *[("Error", 0)] * 3
def create_interface() -> gr.Blocks:
with gr.Blocks(theme=gr.themes.Default()) as interface:
qa_chain = gr.State()
vector_store = gr.State()
gr.Markdown(
"""
<h1 style="text-align:center; color: #ooffff;">
DeepScale R1
</h1>
<p style="text-align:center; color: #008080;">
A Safe and Strong Local RAG System by Adarsh Pandey !!
</p>
""",
elem_id="header-section",
)
with gr.Row():
with gr.Column(scale=1, min_width=300):
gr.Markdown("### Step 1: Document Processing")
file_input = gr.Files(
file_types=[".pdf", ".txt"], file_count="multiple"
)
process_btn = gr.Button("Process Documents", variant="primary")
process_status = gr.Textbox(label="Status", interactive=False)
gr.Markdown("### Step 2: Model Configuration")
with gr.Accordion("Advanced Parameters", open=False):
temp_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
label="Temperature",
)
token_slider = gr.Slider(
minimum=256,
maximum=4096,
value=1024,
step=128,
label="Response Length",
)
topk_slider = gr.Slider(
minimum=1, maximum=100, value=50, step=5, label="Top-K Sampling"
)
init_btn = gr.Button("Initialize Model", variant="primary")
model_status = gr.Textbox(label="Model Status", interactive=False)
with gr.Column(scale=1, min_width=500):
chatbot = gr.Chatbot(
label="Conversation History",
height=450,
avatar_images=["2.png", "3.png"],
)
msg_input = gr.Textbox(
label="Your Query",
placeholder="Ask a question about your documents...",
)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
clear_btn = gr.ClearButton([msg_input, chatbot], value="Clear Chat")
with gr.Accordion("Source References", open=True):
for i in range(3):
with gr.Row():
gr.Textbox(
label=f"Reference {i+1}", max_lines=4, interactive=False
)
gr.Number(label="Page", value=0, interactive=False)
process_btn.click(
fn=lambda files: (
create_vector_store(load_documents([f.name for f in files])),
"Documents processed successfully.",
),
inputs=file_input,
outputs=[vector_store, process_status],
api_name="process_docs",
)
init_btn.click(
fn=lambda vs, temp, tokens, k: (
initialize_deepseek_model(vs, temp, tokens, k),
"Model initialized successfully.",
),
inputs=[vector_store, temp_slider, token_slider, topk_slider],
outputs=[qa_chain, model_status],
api_name="init_model",
)
msg_input.submit(
fn=handle_conversation,
inputs=[qa_chain, msg_input, chatbot],
outputs=[qa_chain, msg_input, chatbot, *(gr.Textbox(), gr.Number()) * 3],
api_name="chat",
)
submit_btn.click(
fn=handle_conversation,
inputs=[qa_chain, msg_input, chatbot],
outputs=[qa_chain, msg_input, chatbot, *(gr.Textbox(), gr.Number()) * 3],
api_name="chat",
)
return interface
if __name__ == "__main__":
app = create_interface()
app.launch(
server_name="0.0.0.0" if os.getenv("DOCKER") else "localhost",
server_port=7860,
show_error=True,
share=True,
favicon_path="1.png",
)
|