Aditya02's picture
Changed the device from cuda to cpu
0c93873
from faster_whisper import WhisperModel
import datetime
import subprocess
import gradio as gr
from pathlib import Path
import pandas as pd
import re
import time
import os
import numpy as np
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_score
import pyannote.audio
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
from pyannote.audio import Audio
from pyannote.core import Segment
import torch
from gpuinfo import GPUInfo
import wave
import contextlib
from transformers import pipeline
import psutil
embedding_model = PretrainedSpeakerEmbedding(
"speechbrain/spkrec-ecapa-voxceleb",
device = "cpu")
# device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
def convert_time(secs):
return datetime.timedelta(seconds=round(secs))
def speech_to_text(audio_file_path, selected_source_lang, whisper_model, num_speakers):
"""
# Transcribe youtube link using OpenAI Whisper
1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
2. Generating speaker embeddings for each segments.
3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
"""
model = WhisperModel(whisper_model, compute_type="int8")
time_start = time.time()
try:
# Get duration
_,file_ending = os.path.splitext(f'{audio_file_path}')
print(f'file enging is {file_ending}')
audio_file = audio_file_path.replace(file_ending, ".wav")
# mp3 to wav format
os.system(f'ffmpeg -i {audio_file_path} -ar 16000 -ac 1 -acodec pcm_s16le {audio_file}')
#Video to audio
# os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
# Get duration
with contextlib.closing(wave.open(audio_file,'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
duration = frames / float(rate)
print(f"conversion to wav ready, duration of audio file: {duration}")
# Transcribe audio
options = dict(language=selected_source_lang, beam_size=5, best_of=5)
transcribe_options = dict(task="transcribe", **options)
segments_raw, info = model.transcribe(audio_file, **transcribe_options)
# Convert back to original openai format
segments = []
i = 0
for segment_chunk in segments_raw:
chunk = {}
chunk["start"] = segment_chunk.start
chunk["end"] = segment_chunk.end
chunk["text"] = segment_chunk.text
segments.append(chunk)
i += 1
print("transcribe audio done with fast whisper")
except Exception as e:
raise RuntimeError("Error converting video to audio")
try:
# Create embedding
def segment_embedding(segment):
audio = Audio()
start = segment["start"]
# Whisper overshoots the end timestamp in the last segment
end = min(duration, segment["end"])
clip = Segment(start, end)
waveform, sample_rate = audio.crop(audio_file, clip)
return embedding_model(waveform[None])
embeddings = np.zeros(shape=(len(segments), 192))
for i, segment in enumerate(segments):
embeddings[i] = segment_embedding(segment)
embeddings = np.nan_to_num(embeddings)
print(f'Embedding shape: {embeddings.shape}')
if num_speakers == 0:
# Find the best number of speakers
score_num_speakers = {}
for num_speakers in range(2, 10+1):
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
score_num_speakers[num_speakers] = score
best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
else:
best_num_speaker = num_speakers
# Assign speaker label
clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
labels = clustering.labels_
for i in range(len(segments)):
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
# Make output
objects = {
'Start' : [],
'End': [],
'Speaker': [],
'Text': []
}
text = ''
for (i, segment) in enumerate(segments):
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
objects['Start'].append(str(convert_time(segment["start"])))
objects['Speaker'].append(segment["speaker"])
if i != 0:
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
text = ''
text += segment["text"] + ' '
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
time_end = time.time()
time_diff = time_end - time_start
memory = psutil.virtual_memory()
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
system_info = f"""
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
*Processing time: {time_diff:.5} seconds.*
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
"""
save_path = "transcript_result.csv"
df_results = pd.DataFrame(objects)
df_results.to_csv(save_path)
return df_results, system_info, save_path
except Exception as e:
raise RuntimeError("Error Running inference with local model", e)
#Code has been inspired from https://huggingface.co/spaces/vumichien/Whisper_speaker_diarization/blob/main/app.py
whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
source_languages = {
"en": "English",
"zh": "Chinese"}
#Gradio app
memory = psutil.virtual_memory()
microphone = gr.inputs.Audio(source="microphone", type="filepath", optional=True)
upload = gr.inputs.Audio(source="upload", type="filepath", optional=True)
df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
selected_source_lang = gr.Dropdown(choices=source_languages, type="value", value="en", label="Spoken language in video",
interactive=True)
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model",
interactive=True)
number_speakers = gr.Number(precision=0, value=0,
label="Input number of speakers for better results. If value=0, model will automatic find the best number of speakers",
interactive=True)
transcription_df = gr.DataFrame(value=df_init, label="Transcription dataframe", row_count=(0, "dynamic"), max_rows=10,
wrap=True, overflow_row_behaviour='paginate')
download_transcript = gr.File(label="Download transcript")
system_info = gr.Markdown(
f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
title = "Whisper speaker diarization"
demo = gr.Blocks(title=title)
demo.encrypt = False
with demo:
with gr.Tab("Whisper speaker diarization"):
gr.Markdown('''
<div>
<h1 style='text-align: center'>Whisper speaker diarization</h1>
This space uses Whisper models from <a href='https://github.com/openai/whisper' target='_blank'><b>OpenAI</b></a> with <a href='https://github.com/guillaumekln/faster-whisper' target='_blank'><b>CTranslate2</b></a> which is a fast inference engine for Transformer models to recognize the speech (4 times faster than original openai model with same accuracy)
and ECAPA-TDNN model from <a href='https://github.com/speechbrain/speechbrain' target='_blank'><b>SpeechBrain</b></a> to encode and clasify speakers
</div>
''')
# with gr.Row():
# gr.Markdown('''
# ### Transcribe youtube link using OpenAI Whisper
# ##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
# ##### 2. Generating speaker embeddings for each segments.
# ##### 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
# ''')
with gr.Row():
with gr.Column():
with gr.Column():
gr.Markdown('''
##### Here you can start the transcription process.
##### Please select the source language for transcription.
##### You can select a range of assumed numbers of speakers.
''')
selected_source_lang.render()
selected_whisper_model.render()
number_speakers.render()
upload.render()
transcribe_btn = gr.Button("Transcribe audio and diarization")
transcribe_btn.click(speech_to_text,
[upload, selected_source_lang, selected_whisper_model, number_speakers],
[transcription_df, system_info, download_transcript]
)
with gr.Row():
gr.Markdown('''
##### Here you will get transcription output
##### ''')
with gr.Row():
with gr.Column():
download_transcript.render()
transcription_df.render()
system_info.render()
demo.launch(debug=True)