import os import gradio as gr from groq import Groq # Groq API Configuration keyment = os.getenv ("Mental") client = Groq(api_key = keyment) # Function to handle responses from Groq def chatbot(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] # Add conversation history for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Append current user message messages.append({"role": "user", "content": message}) # Call the Groq API to generate the response response = "" for chunk in client.chat.completions.create( model="llama-3.3-70b-versatile", messages=messages, temperature=temperature, max_tokens=max_tokens, top_p=top_p, stream=True, ): response += chunk.choices[0].delta.content or "" yield response # System message to inform the AI about its purpose system_message = "You are Jude Mental Health AI Chat. You are an experienced expert in mental health, psychology, and psychiatry. You have a wide range of knowledge, skills, and tools for dealing with mental health issues, and you are also a good educator on mental health issues. Provide concise, informed answers to various prompts on mental health" # Define the Gradio interface def create_interface(): with gr.Blocks() as demo: # Display the main header gr.Markdown("# Welcome to Jude Mental Health AI Chat\n # What can we help you with?") # Chatbot output area (AI's response) chatbot_output = gr.Chatbot(label="Chat with Jude Mental Health AI") # Textbox for user input (prompt) with gr.Row(): user_input = gr.Textbox(placeholder="Enter your question here...", label="Ask a question", interactive=True, elem_id="user_input", lines=3) submit_button = gr.Button("Send", elem_id="submit_button") # Shorter button # Mental Health Topics Buttons with gr.Row(): topic_button_anxiety = gr.Button("Anxiety") topic_button_depression = gr.Button("Depression") topic_button_sleep = gr.Button("Impact of Sleep") topic_button_drugs = gr.Button("Drugs & Mental Health") topic_button_more = gr.Button("More") # Gradio sliders to control the parameters for response generation max_tokens_slider = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens") temperature_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") # Action when submit button is clicked def on_submit(message, history, max_tokens, temperature, top_p): history.append((message, "")) for response in chatbot(message, history, system_message, max_tokens, temperature, top_p): history[-1] = (message, response) # Update the history with the new response return history, gr.update(value="") # Clear the input textbox after submission submit_button.click(on_submit, inputs=[user_input, gr.State([]), max_tokens_slider, temperature_slider, top_p_slider], outputs=[chatbot_output, user_input]) # Action when topic button is clicked def on_topic_click(topic, history, max_tokens, temperature, top_p): topic_message = f"Tell me about {topic}." history.append((topic_message, "")) for response in chatbot(topic_message, history, system_message, max_tokens, temperature, top_p): history[-1] = (topic_message, response) return history, gr.update(value="") # Clear the input textbox after topic selection topic_button_anxiety.click(on_topic_click, inputs=[topic_button_anxiety, gr.State([]), max_tokens_slider, temperature_slider, top_p_slider], outputs=[chatbot_output, user_input]) topic_button_depression.click(on_topic_click, inputs=[topic_button_depression, gr.State([]), max_tokens_slider, temperature_slider, top_p_slider], outputs=[chatbot_output, user_input]) topic_button_sleep.click(on_topic_click, inputs=[topic_button_sleep, gr.State([]), max_tokens_slider, temperature_slider, top_p_slider], outputs=[chatbot_output, user_input]) topic_button_drugs.click(on_topic_click, inputs=[topic_button_drugs, gr.State([]), max_tokens_slider, temperature_slider, top_p_slider], outputs=[chatbot_output, user_input]) topic_button_more.click(on_topic_click, inputs=[topic_button_more, gr.State([]), max_tokens_slider, temperature_slider, top_p_slider], outputs=[chatbot_output, user_input]) return demo # Launch the interface demo = create_interface() demo.launch()