# Import required libraries import os import keras import numpy as np import pandas as pd import streamlit as st from PIL import Image # Function to safely load the models def load_model_safely(path: str): if not os.path.isfile(path) or not path.endswith('.keras'): raise FileNotFoundError(f"The file '{path}' does not exist or is not a .keras file.") return keras.saving.load_model(path) # Retrieve the current directory and specify model paths current_dir = os.getcwd() # Ensure correct initial directory model_paths = { 'CNN': os.path.join(current_dir, 'models', 'cnn_model.keras'), 'VGG19': os.path.join(current_dir, 'models', 'vgg19_model.keras'), 'ResNet50': os.path.join(current_dir, 'models', 'resnet50_model.keras'), } # Load models and handle potential exceptions models = {} for name, path in model_paths.items(): try: models[name] = load_model_safely(path) except Exception as e: st.error(f"Error loading model {name} from {path}: {str(e)}") # Define the class labels classes = { 0:'Speed limit (20km/h)', 1:'Speed limit (30km/h)', 2:'Speed limit (50km/h)', 3:'Speed limit (60km/h)', 4:'Speed limit (70km/h)', 5:'Speed limit (80km/h)', 6:'End of speed limit (80km/h)', 7:'Speed limit (100km/h)', 8:'Speed limit (120km/h)', 9:'No passing', 10:'No passing veh over 3.5 tons', 11:'Right-of-way at intersection', 12:'Priority road', 13:'Yield', 14:'Stop', 15:'No vehicles', 16:'Veh > 3.5 tons prohibited', 17:'No entry', 18:'General caution', 19:'Dangerous curve left', 20:'Dangerous curve right', 21:'Double curve', 22:'Bumpy road', 23:'Slippery road', 24:'Road narrows on the right', 25:'Road work', 26:'Traffic signals', 27:'Pedestrians', 28:'Children crossing', 29:'Bicycles crossing', 30:'Beware of ice/snow', 31:'Wild animals crossing', 32:'End speed + passing limits', 33:'Turn right ahead', 34:'Turn left ahead', 35:'Ahead only', 36:'Go straight or right', 37:'Go straight or left', 38:'Keep right', 39:'Keep left', 40:'Roundabout mandatory', 41:'End of no passing', 42:'End no passing veh > 3.5 tons' } # Function to preprocess the image and predict the class def preprocess_and_predict(image: Image.Image, size=(50, 50)) -> pd.DataFrame: img_resized = image.resize(size) img_array = np.array(img_resized).astype(np.float32) / 255.0 img_array = np.expand_dims(img_array, axis=0) # Shape (1, 50, 50, 3) predictions = [] for name, model in models.items(): predicted_class_index = np.argmax(model.predict(img_array), axis=-1)[0] predictions.append({'Model': name, 'Predicted Label': classes[predicted_class_index]}) return pd.DataFrame(predictions) # Import Example images images_dir = os.path.join(current_dir, 'images') if os.path.exists(images_dir): # Create a list of images and their corresponding classes image_list = [img for img in os.listdir(images_dir) if img.lower().endswith('.png')] image_dict = {classes[int(img.split('.')[0])] : os.path.join(images_dir, img) for img in image_list} else: st.error(f"The images directory does not exist: {images_dir}") # Streamlit UI setup st.set_page_config(page_title="Traffic Sign Detection App", page_icon="🚦", layout="wide") st.title("🚦 Traffic Sign Recognition using CNN, VGG19, ResNet50") st.markdown("Upload a traffic sign image or choose an example from below to get the recognition result.") st.markdown("---") # Sidebar for image upload and selection st.sidebar.header("Input Options") uploaded_file = st.sidebar.file_uploader("Upload an image (JPG, JPEG, PNG)", type=["jpg", "jpeg", "png"]) # Select an example image selected_example = st.sidebar.selectbox("Or select an example image:", list(image_dict.keys())) if selected_example: example_image_path = image_dict[selected_example] # Initialize a variable to hold the image for prediction image_to_predict = None # Check if user uploaded an image or selected an example image if uploaded_file is not None: image_to_predict = Image.open(uploaded_file) st.image(image_to_predict.resize((256, 256)), caption='Uploaded Image', use_container_width=False, output_format="auto") elif selected_example: image_to_predict = Image.open(example_image_path) st.image(image_to_predict.resize((256, 256)), caption='Example Image', use_container_width=False, output_format="auto") # Add a predict button if st.sidebar.button("🚀 Predict", key="predict_button") and image_to_predict is not None: # Run prediction st.write("Predicting ...") results = preprocess_and_predict(image_to_predict) # Display results st.write("### Prediction Results") # Style the output dataframe st.dataframe(results) # Add some custom CSS for better styling st.markdown(""" """, unsafe_allow_html=True)