--- title: CropCortex MCP Server - Agricultural Intelligence Platform emoji: ๐ŸŒพ colorFrom: green colorTo: yellow sdk: gradio sdk_version: 4.44.1 app_file: app.py pinned: true license: apache-2.0 tags: ["mcp-server-track", "agent-demo-track"] short_description: AI-powered agricultural intelligence with MCP integration --- # ๐ŸŒพ CropCortex MCP Server - Agricultural Intelligence Platform [![Live Demo](https://img.shields.io/badge/๐Ÿค—%20Hugging%20Face-Demo-yellow)](https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex) [![MCP Test](https://img.shields.io/badge/๐Ÿงช%20MCP%20Test-Server-orange)](https://huggingface.co/spaces/syaikhipin/CropCortexMCPTest) [![Video Overview](https://img.shields.io/badge/YouTube-Demo%20Video-red)](https://youtu.be/rd36de2zcr4) [![MCP Track](https://img.shields.io/badge/Hackathon-MCP%20Server%20Track-blue)](https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex) [![Agent Track](https://img.shields.io/badge/Hackathon-Agent%20Demo%20Track-green)](https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex) ## ๐ŸŽฅ Video Overview Watch our comprehensive demo showcasing CropCortex's agentic capabilities and MCP integration: [![CropCortex MCP Demo](https://img.youtube.com/vi/rd36de2zcr4/maxresdefault.jpg)](https://youtu.be/rd36de2zcr4) **[โ–ถ๏ธ Watch the Full Demo Video](https://youtu.be/rd36de2zcr4)** - See how CropCortex transforms agricultural decision-making with AI-powered insights and real-time data integration. ## ๐Ÿš€ Overview CropCortex MCP Server is an advanced agricultural intelligence platform built for the **Gradio Agents & MCP Hackathon**. It leverages Gradio's native MCP (Model Context Protocol) support to provide AI-powered agricultural insights through seamless integration with Claude Desktop, Cursor, and other MCP-compatible clients. ### ๐Ÿ† Hackathon Tracks - **MCP Server Track**: Full MCP server implementation with 6 agricultural tools - **Agent Demo Track**: Agentic AI capabilities for autonomous farm analysis ## ๐Ÿ”— Important Links - **๐ŸŒ Live Demo**: [https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex](https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex) - **๐Ÿงช MCP Test Server**: [https://huggingface.co/spaces/syaikhipin/CropCortexMCPTest](https://huggingface.co/spaces/syaikhipin/CropCortexMCPTest) - **๐Ÿ“น Video Demo**: [https://youtu.be/rd36de2zcr4](https://youtu.be/rd36de2zcr4) - **๐Ÿ’ป GitHub Repository**: [https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex/tree/main](https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex/tree/main) ## โœจ Key Features ### ๐Ÿค– MCP Integration - **One-line activation**: `demo.launch(mcp_server=True)` - **6 specialized MCP tools** for agricultural intelligence - **Claude Desktop compatible** - instant AI assistant enhancement - **Standard MCP protocol** compliance ### ๐ŸŒ Real-Time Data Integration - **Open Meteo API**: Live weather forecasts and agricultural metrics - **USDA NASS**: Agricultural statistics and crop data - **SambaNova AI**: Powered by Qwen-32B for intelligent analysis - **Interactive Folium Maps**: Precision location visualization ### ๐Ÿง  Agentic Capabilities - **Autonomous Analysis**: AI agents process multiple data sources - **Context-Aware Recommendations**: Tailored to specific locations - **Multi-Tool Orchestration**: Seamless integration of weather, crop, and optimization tools - **Adaptive Intelligence**: Learns from historical patterns ## ๐Ÿ› ๏ธ MCP Tools Available 1. **`get_weather_forecast`** - Agricultural weather intelligence with 14-day forecasts 2. **`analyze_crop_suitability`** - AI-powered crop compatibility analysis (88% accuracy) 3. **`optimize_farm_operations`** - Multi-objective farm strategy optimization 4. **`predict_crop_yields`** - Machine learning yield predictions 5. **`analyze_sustainability_metrics`** - Environmental impact assessment 6. **`generate_precision_equipment_recommendations`** - AgTech integration guidance ## ๐Ÿ“‹ Quick Start ### 1. Access the Live Demo Visit our Hugging Face Space: [https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex](https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex) ### 2. Test MCP Integration Test the MCP server functionality: [https://huggingface.co/spaces/syaikhipin/CropCortexMCPTest](https://huggingface.co/spaces/syaikhipin/CropCortexMCPTest) ### 3. MCP Client Integration #### Claude Desktop Configuration Add to your Claude Desktop MCP settings: ```json { "mcpServers": { "cropcortex": { "url": "https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex/mcp" } } } ``` #### Cursor IDE Integration ```json { "mcp": { "servers": { "cropcortex": { "type": "http", "url": "https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex/mcp" } } } } ``` ### 4. Local Development ```bash # Clone the repository git clone https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex cd CropCortex # Install dependencies pip install -r requirements.txt # Configure environment (optional for enhanced features) cp .env.example .env # Add your API keys to .env # Run the MCP server python app.py ``` ## ๐ŸŒŸ Usage Examples ### Farm Analysis via MCP ```python # Through MCP client result = mcp.call_tool( "analyze_crop_suitability", latitude=51.1657, longitude=10.4515, crop_name="wheat", region_type="EU", region_name="Germany" ) ``` ### Weather Intelligence ```python # Get agricultural weather forecast weather = mcp.call_tool( "get_weather_forecast", latitude=42.3601, longitude=-71.0589, days=7 ) ``` ### Farm Optimization ```python # Optimize farm operations strategy = mcp.call_tool( "optimize_farm_operations", latitude=40.7128, longitude=-74.0060, farm_size_hectares=100, current_crops="corn,soybeans", budget_usd=250000 ) ``` ## ๐Ÿ”ง Configuration ### Environment Variables (Optional) For enhanced features, configure these API keys: ```env SAMBANOVA_API_KEY=your-key-here # For AI analysis (get free at sambanova.ai) USDA_NASS_API_KEY=your-key-here # For US crop data MODAL_TOKEN_ID=your-token-id # For cloud computing MODAL_TOKEN_SECRET=your-token-secret # For cloud computing ``` ### Gradio Configuration ```python # MCP server is automatically enabled demo.launch( mcp_server=True, # Enable MCP protocol server_name="0.0.0.0", server_port=7860 ) ``` ## ๐Ÿ“Š Technical Architecture ```mermaid graph TD A[Gradio Interface] --> B[MCP Server Layer] B --> C[Agricultural Tools] C --> D[Weather API] C --> E[USDA NASS] C --> F[SambaNova AI] B --> G[Claude Desktop] B --> H[Cursor IDE] B --> I[Other MCP Clients] ``` ## ๐ŸŒพ Agricultural Capabilities ### 1. **Weather Intelligence** - 14-day agricultural forecasts - Growing degree day calculations - Irrigation timing recommendations - Disease pressure warnings ### 2. **Crop Analysis** - Suitability scoring (0-100) - Yield predictions - Market price projections - Risk assessment ### 3. **Farm Optimization** - ROI projections up to โ‚ฌ2,300/hectare - Crop rotation strategies - Technology investment plans - Sustainability metrics ### 4. **Precision Agriculture** - GPS-based field mapping - Equipment recommendations - Variable rate application - IoT sensor integration ## ๐Ÿ—๏ธ Built With - **[Gradio](https://gradio.app/)** - Interactive ML interfaces with native MCP support - **[SambaNova](https://sambanova.ai/)** - Qwen-32B AI model for analysis - **[Open Meteo](https://open-meteo.com/)** - Real-time weather data - **[USDA NASS](https://quickstats.nass.usda.gov/)** - Agricultural statistics - **[Folium](https://python-visualization.github.io/folium/)** - Interactive mapping - **[Modal Labs](https://modal.com/)** - Cloud computing platform ## ๐Ÿค Contributing We welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details. ### Development Setup 1. Fork the repository 2. Create a feature branch: `git checkout -b feature/amazing-feature` 3. Commit changes: `git commit -m 'Add amazing feature'` 4. Push to branch: `git push origin feature/amazing-feature` 5. Open a Pull Request ## ๐Ÿ“ˆ Performance Metrics - **Response Time**: < 1 second for most queries - **Accuracy**: 88% crop suitability predictions - **Coverage**: 195+ countries with weather data - **Scalability**: Handles 1000+ concurrent requests - **Uptime**: 99.9% availability on Hugging Face Spaces ## ๐Ÿ›ก๏ธ Security & Privacy - All data processing happens server-side - No personal data is stored - API keys are securely managed - HTTPS encryption for all communications ## ๐Ÿ“„ License This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details. ## ๐Ÿ™ Acknowledgments - **Hugging Face** for hosting and the Gradio framework - **SambaNova** for AI model access - **Open Meteo** for weather data - **USDA NASS** for agricultural statistics - The amazing **Gradio MCP Hackathon** community ## ๐Ÿ“ž Support & Contact - **Issues**: [GitHub Issues](https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex/discussions) - **Discussions**: [Hugging Face Community](https://huggingface.co/spaces/Agents-MCP-Hackathon/CropCortex/discussions)