Commit
Β·
e84eb34
1
Parent(s):
33d7d69
π Initial Boilerplate setup
Browse files- app.py +230 -0
- config.py +62 -0
- requirements.txt +14 -0
app.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
from typing import Dict, List, Any
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class JobSearchMCP:
|
| 7 |
+
"""Job Search MCP Server - Smart job matching and application helper"""
|
| 8 |
+
|
| 9 |
+
def __init__(self):
|
| 10 |
+
self.user_profiles = {} # In-memory storage for demo purposes
|
| 11 |
+
|
| 12 |
+
def profile_upsert(self, user_id: str, profile_data: str) -> Dict[str, Any]:
|
| 13 |
+
"""
|
| 14 |
+
Stores/updates user rΓ©sumΓ©, skills, salary expectations, and career goals
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
user_id: Unique identifier for the user
|
| 18 |
+
profile_data: JSON string containing user profile information
|
| 19 |
+
|
| 20 |
+
Returns:
|
| 21 |
+
Dict with success status and message
|
| 22 |
+
"""
|
| 23 |
+
try:
|
| 24 |
+
# TODO: Implement profile storage logic
|
| 25 |
+
# - Parse profile_data JSON
|
| 26 |
+
# - Validate required fields (resume, skills, salary_wish, career_goals)
|
| 27 |
+
# - Store in database or persistent storage
|
| 28 |
+
# - Return success/error response
|
| 29 |
+
|
| 30 |
+
return {
|
| 31 |
+
"success": True,
|
| 32 |
+
"message": "Profile updated successfully",
|
| 33 |
+
"user_id": user_id,
|
| 34 |
+
}
|
| 35 |
+
except Exception as e:
|
| 36 |
+
return {"success": False, "message": f"Error updating profile: {str(e)}"}
|
| 37 |
+
|
| 38 |
+
def jobs_search(
|
| 39 |
+
self, user_id: str, query: str = "", location: str = "", job_type: str = ""
|
| 40 |
+
) -> Dict[str, Any]:
|
| 41 |
+
"""
|
| 42 |
+
Pulls fresh job posts, ranks them with GPU embeddings, and returns fit scores
|
| 43 |
+
|
| 44 |
+
Args:
|
| 45 |
+
user_id: User identifier to get personalized results
|
| 46 |
+
query: Job search query/keywords
|
| 47 |
+
location: Preferred job location
|
| 48 |
+
job_type: Type of job (full-time, contract, remote, etc.)
|
| 49 |
+
|
| 50 |
+
Returns:
|
| 51 |
+
Dict with ranked job listings and fit scores
|
| 52 |
+
"""
|
| 53 |
+
try:
|
| 54 |
+
# TODO: Implement job search logic
|
| 55 |
+
# - Fetch jobs from various APIs (LinkedIn, Indeed, etc.)
|
| 56 |
+
# - Use GPU embeddings to calculate job-profile fit scores
|
| 57 |
+
# - Rank jobs by relevance and fit score
|
| 58 |
+
# - Return top matches with metadata
|
| 59 |
+
|
| 60 |
+
return {
|
| 61 |
+
"success": True,
|
| 62 |
+
"jobs": [],
|
| 63 |
+
"total_found": 0,
|
| 64 |
+
"search_params": {
|
| 65 |
+
"query": query,
|
| 66 |
+
"location": location,
|
| 67 |
+
"job_type": job_type,
|
| 68 |
+
},
|
| 69 |
+
}
|
| 70 |
+
except Exception as e:
|
| 71 |
+
return {"success": False, "message": f"Error searching jobs: {str(e)}"}
|
| 72 |
+
|
| 73 |
+
def letter_generate(
|
| 74 |
+
self, user_id: str, job_description: str, tone: str = "professional"
|
| 75 |
+
) -> Dict[str, Any]:
|
| 76 |
+
"""
|
| 77 |
+
Generates personalized cover letters using LLM
|
| 78 |
+
|
| 79 |
+
Args:
|
| 80 |
+
user_id: User identifier to access profile
|
| 81 |
+
job_description: The job posting description
|
| 82 |
+
tone: Tone of the cover letter (professional, casual, enthusiastic, etc.)
|
| 83 |
+
|
| 84 |
+
Returns:
|
| 85 |
+
Dict with generated cover letter
|
| 86 |
+
"""
|
| 87 |
+
try:
|
| 88 |
+
# TODO: Implement cover letter generation
|
| 89 |
+
# - Retrieve user profile
|
| 90 |
+
# - Use LLM to generate personalized cover letter
|
| 91 |
+
# - Match user skills with job requirements
|
| 92 |
+
# - Apply specified tone
|
| 93 |
+
# - Return formatted cover letter
|
| 94 |
+
|
| 95 |
+
return {
|
| 96 |
+
"success": True,
|
| 97 |
+
"cover_letter": "",
|
| 98 |
+
"tone_used": tone,
|
| 99 |
+
"word_count": 0,
|
| 100 |
+
}
|
| 101 |
+
except Exception as e:
|
| 102 |
+
return {
|
| 103 |
+
"success": False,
|
| 104 |
+
"message": f"Error generating cover letter: {str(e)}",
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
def qa_reply(
|
| 108 |
+
self, user_id: str, question: str, context: str = ""
|
| 109 |
+
) -> Dict[str, Any]:
|
| 110 |
+
"""
|
| 111 |
+
Drafts concise answers to client questions
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
user_id: User identifier to access profile
|
| 115 |
+
question: The question from potential employer/client
|
| 116 |
+
context: Additional context about the conversation
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
Dict with generated response
|
| 120 |
+
"""
|
| 121 |
+
try:
|
| 122 |
+
# TODO: Implement Q&A response generation
|
| 123 |
+
# - Retrieve user profile and experience
|
| 124 |
+
# - Generate contextual response using LLM
|
| 125 |
+
# - Keep response concise and professional
|
| 126 |
+
# - Tailor to user's background and skills
|
| 127 |
+
|
| 128 |
+
return {"success": True, "response": "", "confidence_score": 0.0}
|
| 129 |
+
except Exception as e:
|
| 130 |
+
return {"success": False, "message": f"Error generating response: {str(e)}"}
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# Initialize the MCP server
|
| 134 |
+
mcp_server = JobSearchMCP()
|
| 135 |
+
|
| 136 |
+
# Create Gradio interface for each endpoint
|
| 137 |
+
with gr.Blocks(title="Job Search MCP Server") as demo:
|
| 138 |
+
gr.Markdown("# π Job Search MCP Server")
|
| 139 |
+
gr.Markdown("Smart job matching and instant application helper")
|
| 140 |
+
|
| 141 |
+
with gr.Tab("Profile Management"):
|
| 142 |
+
gr.Markdown("### Store and update your professional profile")
|
| 143 |
+
with gr.Row():
|
| 144 |
+
profile_user_id = gr.Textbox(
|
| 145 |
+
label="User ID", placeholder="Enter your unique user ID"
|
| 146 |
+
)
|
| 147 |
+
profile_data = gr.TextArea(
|
| 148 |
+
label="Profile Data (JSON)",
|
| 149 |
+
placeholder='{"resume": "...", "skills": [...], "salary_wish": "...", "career_goals": "..."}',
|
| 150 |
+
lines=5,
|
| 151 |
+
)
|
| 152 |
+
profile_submit = gr.Button("Update Profile", variant="primary")
|
| 153 |
+
profile_output = gr.JSON(label="Response")
|
| 154 |
+
|
| 155 |
+
profile_submit.click(
|
| 156 |
+
fn=mcp_server.profile_upsert,
|
| 157 |
+
inputs=[profile_user_id, profile_data],
|
| 158 |
+
outputs=profile_output,
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
with gr.Tab("Job Search"):
|
| 162 |
+
gr.Markdown("### Find and rank relevant job opportunities")
|
| 163 |
+
with gr.Row():
|
| 164 |
+
search_user_id = gr.Textbox(label="User ID")
|
| 165 |
+
search_query = gr.Textbox(
|
| 166 |
+
label="Search Query", placeholder="e.g., Python developer"
|
| 167 |
+
)
|
| 168 |
+
with gr.Row():
|
| 169 |
+
search_location = gr.Textbox(
|
| 170 |
+
label="Location", placeholder="e.g., Remote, New York"
|
| 171 |
+
)
|
| 172 |
+
search_job_type = gr.Dropdown(
|
| 173 |
+
label="Job Type",
|
| 174 |
+
choices=["full-time", "part-time", "contract", "freelance", "remote"],
|
| 175 |
+
value="full-time",
|
| 176 |
+
)
|
| 177 |
+
search_submit = gr.Button("Search Jobs", variant="primary")
|
| 178 |
+
search_output = gr.JSON(label="Job Results")
|
| 179 |
+
|
| 180 |
+
search_submit.click(
|
| 181 |
+
fn=mcp_server.jobs_search,
|
| 182 |
+
inputs=[search_user_id, search_query, search_location, search_job_type],
|
| 183 |
+
outputs=search_output,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
with gr.Tab("Cover Letter Generator"):
|
| 187 |
+
gr.Markdown("### Generate personalized cover letters")
|
| 188 |
+
with gr.Row():
|
| 189 |
+
letter_user_id = gr.Textbox(label="User ID")
|
| 190 |
+
letter_tone = gr.Dropdown(
|
| 191 |
+
label="Tone",
|
| 192 |
+
choices=["professional", "casual", "enthusiastic", "formal"],
|
| 193 |
+
value="professional",
|
| 194 |
+
)
|
| 195 |
+
letter_job_desc = gr.TextArea(
|
| 196 |
+
label="Job Description",
|
| 197 |
+
placeholder="Paste the job description here...",
|
| 198 |
+
lines=5,
|
| 199 |
+
)
|
| 200 |
+
letter_submit = gr.Button("Generate Cover Letter", variant="primary")
|
| 201 |
+
letter_output = gr.JSON(label="Generated Letter")
|
| 202 |
+
|
| 203 |
+
letter_submit.click(
|
| 204 |
+
fn=mcp_server.letter_generate,
|
| 205 |
+
inputs=[letter_user_id, letter_job_desc, letter_tone],
|
| 206 |
+
outputs=letter_output,
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
with gr.Tab("Q&A Assistant"):
|
| 210 |
+
gr.Markdown("### Get help with interview questions and client responses")
|
| 211 |
+
with gr.Row():
|
| 212 |
+
qa_user_id = gr.Textbox(label="User ID")
|
| 213 |
+
qa_context = gr.Textbox(
|
| 214 |
+
label="Context (optional)", placeholder="Additional context..."
|
| 215 |
+
)
|
| 216 |
+
qa_question = gr.TextArea(
|
| 217 |
+
label="Question", placeholder="e.g., Why should we hire you?", lines=3
|
| 218 |
+
)
|
| 219 |
+
qa_submit = gr.Button("Generate Response", variant="primary")
|
| 220 |
+
qa_output = gr.JSON(label="Generated Response")
|
| 221 |
+
|
| 222 |
+
qa_submit.click(
|
| 223 |
+
fn=mcp_server.qa_reply,
|
| 224 |
+
inputs=[qa_user_id, qa_question, qa_context],
|
| 225 |
+
outputs=qa_output,
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
if __name__ == "__main__":
|
| 229 |
+
# Enable MCP server functionality
|
| 230 |
+
demo.launch(enable_mcp=True)
|
config.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
|
| 4 |
+
# Load environment variables from .env file
|
| 5 |
+
load_dotenv()
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Config:
|
| 9 |
+
"""Configuration settings for Job Search MCP Server"""
|
| 10 |
+
|
| 11 |
+
# API Keys
|
| 12 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 13 |
+
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
|
| 14 |
+
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
|
| 15 |
+
|
| 16 |
+
# Job Search APIs
|
| 17 |
+
LINKEDIN_API_KEY = os.getenv("LINKEDIN_API_KEY")
|
| 18 |
+
INDEED_API_KEY = os.getenv("INDEED_API_KEY")
|
| 19 |
+
GLASSDOOR_API_KEY = os.getenv("GLASSDOOR_API_KEY")
|
| 20 |
+
|
| 21 |
+
# Database Settings (for future implementation)
|
| 22 |
+
DATABASE_URL = os.getenv("DATABASE_URL", "sqlite:///jobsearch.db")
|
| 23 |
+
|
| 24 |
+
# Embedding Model Settings
|
| 25 |
+
EMBEDDING_MODEL = os.getenv(
|
| 26 |
+
"EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L6-v2"
|
| 27 |
+
)
|
| 28 |
+
EMBEDDING_CACHE_SIZE = int(os.getenv("EMBEDDING_CACHE_SIZE", "1000"))
|
| 29 |
+
|
| 30 |
+
# LLM Settings
|
| 31 |
+
DEFAULT_LLM_MODEL = os.getenv("DEFAULT_LLM_MODEL", "gpt-3.5-turbo")
|
| 32 |
+
MAX_TOKENS = int(os.getenv("MAX_TOKENS", "1000"))
|
| 33 |
+
TEMPERATURE = float(os.getenv("TEMPERATURE", "0.7"))
|
| 34 |
+
|
| 35 |
+
# Job Search Settings
|
| 36 |
+
MAX_JOBS_PER_SEARCH = int(os.getenv("MAX_JOBS_PER_SEARCH", "50"))
|
| 37 |
+
MIN_MATCH_SCORE = float(os.getenv("MIN_MATCH_SCORE", "0.6"))
|
| 38 |
+
|
| 39 |
+
# Cover Letter Settings
|
| 40 |
+
MAX_COVER_LETTER_WORDS = int(os.getenv("MAX_COVER_LETTER_WORDS", "300"))
|
| 41 |
+
|
| 42 |
+
# Server Settings
|
| 43 |
+
SERVER_HOST = os.getenv("SERVER_HOST", "127.0.0.1")
|
| 44 |
+
SERVER_PORT = int(os.getenv("SERVER_PORT", "7860"))
|
| 45 |
+
DEBUG = os.getenv("DEBUG", "False").lower() == "true"
|
| 46 |
+
|
| 47 |
+
@classmethod
|
| 48 |
+
def validate_config(cls):
|
| 49 |
+
"""Validate that required configuration is present"""
|
| 50 |
+
required_keys = ["OPENAI_API_KEY", "ANTHROPIC_API_KEY"]
|
| 51 |
+
|
| 52 |
+
missing_keys = []
|
| 53 |
+
for key in required_keys:
|
| 54 |
+
if not getattr(cls, key):
|
| 55 |
+
missing_keys.append(key)
|
| 56 |
+
|
| 57 |
+
if missing_keys:
|
| 58 |
+
raise ValueError(
|
| 59 |
+
f"Missing required environment variables: {', '.join(missing_keys)}"
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
return True
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio[mcp]>=5.0.0
|
| 2 |
+
openai>=1.0.0
|
| 3 |
+
anthropic>=0.30.0
|
| 4 |
+
requests>=2.31.0
|
| 5 |
+
python-dotenv>=1.0.0
|
| 6 |
+
numpy>=1.24.0
|
| 7 |
+
sentence-transformers>=2.2.0
|
| 8 |
+
scikit-learn>=1.3.0
|
| 9 |
+
pandas>=2.0.0
|
| 10 |
+
beautifulsoup4>=4.12.0
|
| 11 |
+
lxml>=4.9.0
|
| 12 |
+
httpx>=0.24.0
|
| 13 |
+
pydantic>=2.0.0
|
| 14 |
+
python-multipart>=0.0.6
|