rajsinghparihar commited on
Commit
6922b6c
·
1 Parent(s): f09c794
Files changed (4) hide show
  1. .gitignore +3 -0
  2. agent.py +76 -0
  3. app.py +9 -55
  4. requirements.txt +2 -1
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ .env
2
+ __pycache__
3
+ *.pyc
agent.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ from openai.types.responses import ResponseTextDeltaEvent
4
+ from agents import Agent, Runner, AsyncOpenAI, OpenAIChatCompletionsModel
5
+ from agents.mcp import MCPServerSse
6
+
7
+ # Load environment
8
+ load_dotenv()
9
+
10
+ # MCP tool URL (replace with actual URL you got from step 4.3)
11
+ SERVER_URL = "https://rajsinghparihar-travel-itinerary-planner.hf.space/gradio_api/mcp/sse"
12
+
13
+ instructions = """
14
+ You are an expert travel planner.
15
+ Given a user query, resolve it, if needed you will use the connected MCP tool to assist with travel planning tasks.
16
+
17
+
18
+ Your tasks include:
19
+
20
+ 1. Search for flight options using the tools from the mcp server,
21
+ 2. Search for hotel options using the tools from the mcp server, keeping in mind the user's preferences.
22
+ 3. Once you've decided the best options based on the user query, for each flight and hotel, include the booking link, for hotels you may include thumbnail image links.
23
+ 4. Estimate the total budget (flight + hotel for the stay).
24
+ 4. Suggest a list of fun activities at the destination based on your knowledge about the destination.
25
+ 5. Format the entire report in Markdown with clear headings and bullet points.
26
+
27
+ any other suggestions which make the trip fun are also welcome.
28
+ """
29
+
30
+ mcp_server = MCPServerSse({"url": SERVER_URL})
31
+ model = OpenAIChatCompletionsModel(
32
+ model="Qwen/Qwen3-235B-A22B",
33
+ openai_client=AsyncOpenAI(base_url="https://api.studio.nebius.com/v1/", api_key=os.getenv("NEBIUS_API_KEY"))
34
+ )
35
+ async def get_itinerary(user_query, history):
36
+ try:
37
+ await mcp_server.connect()
38
+ agent = Agent(
39
+ name="MCP Agent",
40
+ instructions=instructions,
41
+ mcp_servers=[mcp_server],
42
+ model=model,
43
+ )
44
+
45
+ task = "You are a helpful assistant. Use the connected tool to assist with tasks."
46
+ task += f"\n\nUser Query: {user_query}\n\n"
47
+
48
+ think_buffer = ""
49
+ response_buffer = ""
50
+ showing_thought = False
51
+
52
+ result = Runner.run_streamed(agent, task)
53
+ async for event in result.stream_events():
54
+ if event.type == "raw_response_event" and isinstance(event.data, ResponseTextDeltaEvent):
55
+ token = event.data.delta
56
+
57
+ if "<think>" in token:
58
+ showing_thought = True
59
+ think_buffer = ""
60
+ continue
61
+ elif "</think>" in token:
62
+ showing_thought = False
63
+ yield f"🤔 *Thinking:* {think_buffer}\n"
64
+ continue
65
+
66
+ if showing_thought:
67
+ think_buffer += token
68
+ if len(think_buffer) > 0:
69
+ yield f"🤔 *Thinking:* {think_buffer}"
70
+ else:
71
+ response_buffer += token
72
+ if len(response_buffer) > 0:
73
+ yield f"{response_buffer}"
74
+
75
+ finally:
76
+ await mcp_server.cleanup()
app.py CHANGED
@@ -1,62 +1,16 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
 
 
1
  import gradio as gr
2
+ from agent import get_itinerary
3
 
4
+ # async def respond(message, history):
5
+ # partial_message = ""
6
+ # async for token in get_itinerary(message, history):
7
+ # partial_message += str(token)
8
+ # # Use yield to stream each update
9
+ # yield partial_message
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  demo = gr.ChatInterface(
12
+ get_itinerary,
13
+ type="messages"
 
 
 
 
 
 
 
 
 
 
 
14
  )
15
 
16
 
requirements.txt CHANGED
@@ -1 +1,2 @@
1
- huggingface_hub==0.25.2
 
 
1
+ openai-agents==0.0.17
2
+ openai==1.85.0