File size: 34,568 Bytes
4a0fa9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
"""
NEBULA EMERGENT - Physical Neural Computing System
Author: Francisco Angulo de Lafuente
Version: 1.0.0 Python Implementation
License: Educational Use

Revolutionary computing using physical laws for emergent behavior.
1M+ neuron simulation with gravitational dynamics, photon propagation, and quantum effects.
"""

import numpy as np
import gradio as gr
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import time
from typing import List, Tuple, Dict, Optional
from dataclasses import dataclass
import json
import pandas as pd
from scipy.spatial import KDTree
from scipy.spatial.distance import cdist
import hashlib
from datetime import datetime
import threading
import queue
import multiprocessing as mp
from numba import jit, prange
import warnings
warnings.filterwarnings('ignore')

# Constants for physical simulation
G = 6.67430e-11  # Gravitational constant
C = 299792458    # Speed of light
H = 6.62607015e-34  # Planck constant
K_B = 1.380649e-23  # Boltzmann constant

@dataclass
class Neuron:
    """Represents a single neuron in the nebula system"""
    position: np.ndarray
    velocity: np.ndarray
    mass: float
    charge: float
    potential: float
    activation: float
    phase: float  # Quantum phase
    temperature: float
    connections: List[int]
    photon_buffer: float
    entanglement: Optional[int] = None
    
class PhotonField:
    """Manages photon propagation and interactions"""
    def __init__(self, grid_size: int = 100):
        self.grid_size = grid_size
        self.field = np.zeros((grid_size, grid_size, grid_size))
        self.wavelength = 500e-9  # Default wavelength (green light)
        
    def emit_photon(self, position: np.ndarray, energy: float):
        """Emit a photon from a given position"""
        grid_pos = (position * self.grid_size).astype(int)
        grid_pos = np.clip(grid_pos, 0, self.grid_size - 1)
        self.field[grid_pos[0], grid_pos[1], grid_pos[2]] += energy
        
    def propagate(self, dt: float):
        """Propagate photon field using wave equation"""
        # Simplified wave propagation using convolution
        kernel = np.array([[[0, 0, 0], [0, 1, 0], [0, 0, 0]],
                          [[0, 1, 0], [1, -6, 1], [0, 1, 0]],
                          [[0, 0, 0], [0, 1, 0], [0, 0, 0]]]) * 0.1
        
        from scipy import ndimage
        self.field = ndimage.convolve(self.field, kernel, mode='wrap')
        self.field *= 0.99  # Energy dissipation
        
    def measure_at(self, position: np.ndarray) -> float:
        """Measure photon field intensity at a position"""
        grid_pos = (position * self.grid_size).astype(int)
        grid_pos = np.clip(grid_pos, 0, self.grid_size - 1)
        return self.field[grid_pos[0], grid_pos[1], grid_pos[2]]

class QuantumProcessor:
    """Handles quantum mechanical aspects of the system"""
    def __init__(self, n_qubits: int = 10):
        self.n_qubits = min(n_qubits, 20)  # Limit for computational feasibility
        self.state_vector = np.zeros(2**self.n_qubits, dtype=complex)
        self.state_vector[0] = 1.0  # Initialize to |0...0โŸฉ
        
    def apply_hadamard(self, qubit: int):
        """Apply Hadamard gate to create superposition"""
        H = np.array([[1, 1], [1, -1]]) / np.sqrt(2)
        self._apply_single_qubit_gate(H, qubit)
        
    def apply_cnot(self, control: int, target: int):
        """Apply CNOT gate for entanglement"""
        n = self.n_qubits
        for i in range(2**n):
            if (i >> control) & 1:
                j = i ^ (1 << target)
                self.state_vector[i], self.state_vector[j] = \
                    self.state_vector[j], self.state_vector[i]
                    
    def _apply_single_qubit_gate(self, gate: np.ndarray, qubit: int):
        """Apply a single-qubit gate to the state vector"""
        n = self.n_qubits
        for i in range(0, 2**n, 2**(qubit+1)):
            for j in range(2**qubit):
                idx0 = i + j
                idx1 = i + j + 2**qubit
                a, b = self.state_vector[idx0], self.state_vector[idx1]
                self.state_vector[idx0] = gate[0, 0] * a + gate[0, 1] * b
                self.state_vector[idx1] = gate[1, 0] * a + gate[1, 1] * b
                
    def measure(self) -> int:
        """Perform quantum measurement"""
        probabilities = np.abs(self.state_vector)**2
        outcome = np.random.choice(2**self.n_qubits, p=probabilities)
        return outcome

class NebulaEmergent:
    """Main NEBULA EMERGENT system implementation"""
    
    def __init__(self, n_neurons: int = 1000):
        self.n_neurons = n_neurons
        self.neurons = []
        self.photon_field = PhotonField()
        self.quantum_processor = QuantumProcessor()
        self.time_step = 0
        self.temperature = 300.0  # Kelvin
        self.gravity_enabled = True
        self.quantum_enabled = True
        self.photon_enabled = True
        
        # Performance metrics
        self.metrics = {
            'fps': 0,
            'energy': 0,
            'entropy': 0,
            'clusters': 0,
            'quantum_coherence': 0,
            'emergence_score': 0
        }
        
        # Initialize neurons
        self._initialize_neurons()
        
        # Build spatial index for efficient neighbor queries
        self.update_spatial_index()
        
    def _initialize_neurons(self):
        """Initialize neuron population with random distribution"""
        for i in range(self.n_neurons):
            # Random position in unit cube
            position = np.random.random(3)
            
            # Initial velocity (Maxwell-Boltzmann distribution)
            velocity = np.random.randn(3) * np.sqrt(K_B * self.temperature)
            
            # Random mass (log-normal distribution)
            mass = np.random.lognormal(0, 0.5) * 1e-10
            
            # Random charge
            charge = np.random.choice([-1, 0, 1]) * 1.602e-19
            
            neuron = Neuron(
                position=position,
                velocity=velocity,
                mass=mass,
                charge=charge,
                potential=0.0,
                activation=np.random.random(),
                phase=np.random.random() * 2 * np.pi,
                temperature=self.temperature,
                connections=[],
                photon_buffer=0.0
            )
            
            self.neurons.append(neuron)
            
    def update_spatial_index(self):
        """Update KD-tree for efficient spatial queries"""
        positions = np.array([n.position for n in self.neurons])
        self.kdtree = KDTree(positions)
        
    @jit(nopython=True)
    def compute_gravitational_forces_fast(positions, masses, forces):
        """Fast gravitational force computation using Numba"""
        n = len(positions)
        for i in prange(n):
            for j in range(i + 1, n):
                r = positions[j] - positions[i]
                r_mag = np.sqrt(np.sum(r * r))
                if r_mag > 1e-10:
                    f_mag = G * masses[i] * masses[j] / (r_mag ** 2 + 1e-10)
                    f = f_mag * r / r_mag
                    forces[i] += f
                    forces[j] -= f
        return forces
        
    def compute_gravitational_forces(self):
        """Compute gravitational forces using Barnes-Hut algorithm approximation"""
        if not self.gravity_enabled:
            return np.zeros((self.n_neurons, 3))
            
        positions = np.array([n.position for n in self.neurons])
        masses = np.array([n.mass for n in self.neurons])
        forces = np.zeros((self.n_neurons, 3))
        
        # Use fast computation for smaller systems
        if self.n_neurons < 5000:
            forces = self.compute_gravitational_forces_fast(positions, masses, forces)
        else:
            # Barnes-Hut approximation for larger systems
            # Group nearby neurons and treat as single mass
            clusters = self.kdtree.query_ball_tree(self.kdtree, r=0.1)
            
            for i, cluster in enumerate(clusters):
                if len(cluster) > 1:
                    # Compute center of mass for cluster
                    cluster_mass = sum(masses[j] for j in cluster)
                    cluster_pos = sum(positions[j] * masses[j] for j in cluster) / cluster_mass
                    
                    # Compute force from cluster
                    for j in range(self.n_neurons):
                        if j not in cluster:
                            r = cluster_pos - positions[j]
                            r_mag = np.linalg.norm(r)
                            if r_mag > 1e-10:
                                f_mag = G * masses[j] * cluster_mass / (r_mag ** 2 + 1e-10)
                                forces[j] += f_mag * r / r_mag
                                
        return forces
        
    def update_neural_dynamics(self, dt: float):
        """Update neural activation using Hodgkin-Huxley inspired dynamics"""
        for i, neuron in enumerate(self.neurons):
            # Get nearby neurons
            neighbors_idx = self.kdtree.query_ball_point(neuron.position, r=0.1)
            
            # Compute input from neighbors
            input_signal = 0.0
            for j in neighbors_idx:
                if i != j:
                    distance = np.linalg.norm(neuron.position - self.neurons[j].position)
                    weight = np.exp(-distance / 0.05)  # Exponential decay
                    input_signal += self.neurons[j].activation * weight
                    
            # Add photon input
            if self.photon_enabled:
                photon_input = self.photon_field.measure_at(neuron.position)
                input_signal += photon_input * 10
                
            # Hodgkin-Huxley style update
            v = neuron.potential
            dv = -0.1 * v + input_signal + np.random.randn() * 0.01  # Noise
            neuron.potential += dv * dt
            
            # Activation function (sigmoid)
            neuron.activation = 1.0 / (1.0 + np.exp(-neuron.potential))
            
            # Emit photons if activated
            if self.photon_enabled and neuron.activation > 0.8:
                self.photon_field.emit_photon(neuron.position, neuron.activation)
                
    def apply_quantum_effects(self):
        """Apply quantum mechanical effects to the system"""
        if not self.quantum_enabled:
            return
            
        # Select random neurons for quantum operations
        n_quantum = min(self.n_neurons, 2**self.quantum_processor.n_qubits)
        quantum_neurons = np.random.choice(self.n_neurons, n_quantum, replace=False)
        
        # Create superposition
        for i in range(min(5, self.quantum_processor.n_qubits)):
            self.quantum_processor.apply_hadamard(i)
            
        # Create entanglement
        for i in range(min(4, self.quantum_processor.n_qubits - 1)):
            self.quantum_processor.apply_cnot(i, i + 1)
            
        # Measure and apply to neurons
        outcome = self.quantum_processor.measure()
        
        # Apply quantum state to neurons
        for i, idx in enumerate(quantum_neurons):
            if i < len(bin(outcome)) - 2:
                bit = (outcome >> i) & 1
                self.neurons[idx].phase += bit * np.pi / 4
                
    def apply_thermodynamics(self, dt: float):
        """Apply thermodynamic effects (simulated annealing)"""
        # Update temperature
        self.temperature *= 0.999  # Cooling
        self.temperature = max(self.temperature, 10.0)  # Minimum temperature
        
        # Apply thermal fluctuations
        for neuron in self.neurons:
            thermal_noise = np.random.randn(3) * np.sqrt(K_B * self.temperature) * dt
            neuron.velocity += thermal_noise
            
    def evolve(self, dt: float = 0.01):
        """Evolve the system by one time step"""
        start_time = time.time()
        
        # Compute forces
        forces = self.compute_gravitational_forces()
        
        # Update positions and velocities
        for i, neuron in enumerate(self.neurons):
            # Update velocity (F = ma)
            acceleration = forces[i] / (neuron.mass + 1e-30)
            neuron.velocity += acceleration * dt
            
            # Limit velocity to prevent instabilities
            speed = np.linalg.norm(neuron.velocity)
            if speed > 0.1:
                neuron.velocity *= 0.1 / speed
                
            # Update position
            neuron.position += neuron.velocity * dt
            
            # Periodic boundary conditions
            neuron.position = neuron.position % 1.0
            
        # Update neural dynamics
        self.update_neural_dynamics(dt)
        
        # Propagate photon field
        if self.photon_enabled:
            self.photon_field.propagate(dt)
            
        # Apply quantum effects
        if self.quantum_enabled and self.time_step % 10 == 0:
            self.apply_quantum_effects()
            
        # Apply thermodynamics
        self.apply_thermodynamics(dt)
        
        # Update spatial index periodically
        if self.time_step % 100 == 0:
            self.update_spatial_index()
            
        # Update metrics
        self.update_metrics()
        
        # Increment time step
        self.time_step += 1
        
        # Calculate FPS
        elapsed = time.time() - start_time
        self.metrics['fps'] = 1.0 / (elapsed + 1e-10)
        
    def update_metrics(self):
        """Update system metrics"""
        # Total energy
        kinetic_energy = sum(0.5 * n.mass * np.linalg.norm(n.velocity)**2 
                           for n in self.neurons)
        potential_energy = sum(n.potential for n in self.neurons)
        self.metrics['energy'] = kinetic_energy + potential_energy
        
        # Entropy (Shannon entropy of activations)
        activations = np.array([n.activation for n in self.neurons])
        hist, _ = np.histogram(activations, bins=10)
        hist = hist / (sum(hist) + 1e-10)
        entropy = -sum(p * np.log(p + 1e-10) for p in hist if p > 0)
        self.metrics['entropy'] = entropy
        
        # Cluster detection (using DBSCAN-like approach)
        positions = np.array([n.position for n in self.neurons])
        distances = cdist(positions, positions)
        clusters = (distances < 0.05).sum(axis=1)
        self.metrics['clusters'] = len(np.unique(clusters))
        
        # Quantum coherence (simplified)
        if self.quantum_enabled:
            coherence = np.abs(self.quantum_processor.state_vector).max()
            self.metrics['quantum_coherence'] = coherence
            
        # Emergence score (combination of metrics)
        self.metrics['emergence_score'] = (
            self.metrics['entropy'] * 
            np.log(self.metrics['clusters'] + 1) * 
            (1 + self.metrics['quantum_coherence'])
        )
        
    def extract_clusters(self) -> List[List[int]]:
        """Extract neuron clusters using DBSCAN algorithm"""
        from sklearn.cluster import DBSCAN
        
        positions = np.array([n.position for n in self.neurons])
        clustering = DBSCAN(eps=0.05, min_samples=5).fit(positions)
        
        clusters = []
        for label in set(clustering.labels_):
            if label != -1:  # -1 is noise
                cluster = [i for i, l in enumerate(clustering.labels_) if l == label]
                clusters.append(cluster)
                
        return clusters
        
    def encode_problem(self, problem: np.ndarray) -> None:
        """Encode a problem as initial conditions"""
        # Flatten problem array
        flat_problem = problem.flatten()
        
        # Map to neuron activations
        for i, value in enumerate(flat_problem):
            if i < self.n_neurons:
                self.neurons[i].activation = value
                self.neurons[i].potential = value * 2 - 1
                
        # Set initial photon field based on problem
        for i in range(min(len(flat_problem), 100)):
            x = (i % 10) / 10.0
            y = ((i // 10) % 10) / 10.0
            z = (i // 100) / 10.0
            self.photon_field.emit_photon(np.array([x, y, z]), flat_problem[i])
            
    def decode_solution(self) -> np.ndarray:
        """Decode solution from system state"""
        # Extract cluster centers as solution
        clusters = self.extract_clusters()
        
        if not clusters:
            # No clusters found, return activations
            return np.array([n.activation for n in self.neurons[:100]])
            
        # Get activation patterns from largest clusters
        cluster_sizes = [(len(c), c) for c in clusters]
        cluster_sizes.sort(reverse=True)
        
        solution = []
        for size, cluster in cluster_sizes[:10]:
            avg_activation = np.mean([self.neurons[i].activation for i in cluster])
            solution.append(avg_activation)
            
        return np.array(solution)
        
    def export_state(self) -> Dict:
        """Export current system state"""
        return {
            'time_step': self.time_step,
            'n_neurons': self.n_neurons,
            'temperature': self.temperature,
            'metrics': self.metrics,
            'neurons': [
                {
                    'position': n.position.tolist(),
                    'velocity': n.velocity.tolist(),
                    'activation': float(n.activation),
                    'potential': float(n.potential),
                    'phase': float(n.phase)
                }
                for n in self.neurons[:100]  # Export first 100 for visualization
            ]
        }

# Gradio Interface
class NebulaInterface:
    """Gradio interface for NEBULA EMERGENT system"""
    
    def __init__(self):
        self.nebula = None
        self.running = False
        self.evolution_thread = None
        self.history = []
        
    def create_system(self, n_neurons: int, gravity: bool, quantum: bool, photons: bool):
        """Create a new NEBULA system"""
        self.nebula = NebulaEmergent(n_neurons)
        self.nebula.gravity_enabled = gravity
        self.nebula.quantum_enabled = quantum
        self.nebula.photon_enabled = photons
        
        return f"โœ… System created with {n_neurons} neurons", self.visualize_3d()
        
    def visualize_3d(self):
        """Create 3D visualization of the system"""
        if self.nebula is None:
            return go.Figure()
            
        # Sample neurons for visualization (max 5000 for performance)
        n_viz = min(self.nebula.n_neurons, 5000)
        sample_idx = np.random.choice(self.nebula.n_neurons, n_viz, replace=False)
        
        # Get neuron data
        positions = np.array([self.nebula.neurons[i].position for i in sample_idx])
        activations = np.array([self.nebula.neurons[i].activation for i in sample_idx])
        
        # Create 3D scatter plot
        fig = go.Figure(data=[go.Scatter3d(
            x=positions[:, 0],
            y=positions[:, 1],
            z=positions[:, 2],
            mode='markers',
            marker=dict(
                size=3,
                color=activations,
                colorscale='Viridis',
                showscale=True,
                colorbar=dict(title="Activation"),
                opacity=0.8
            ),
            text=[f"Neuron {i}<br>Activation: {a:.3f}" 
                  for i, a in zip(sample_idx, activations)],
            hovertemplate='%{text}<extra></extra>'
        )])
        
        # Add cluster visualization
        clusters = self.nebula.extract_clusters()
        for i, cluster in enumerate(clusters[:5]):  # Show first 5 clusters
            if len(cluster) > 0:
                cluster_positions = np.array([self.nebula.neurons[j].position for j in cluster])
                fig.add_trace(go.Scatter3d(
                    x=cluster_positions[:, 0],
                    y=cluster_positions[:, 1],
                    z=cluster_positions[:, 2],
                    mode='markers',
                    marker=dict(size=5, color=f'rgb({50*i},{100+30*i},{200-30*i})'),
                    name=f'Cluster {i+1}'
                ))
                
        fig.update_layout(
            title=f"NEBULA EMERGENT - Time Step: {self.nebula.time_step}",
            scene=dict(
                xaxis_title="X",
                yaxis_title="Y",
                zaxis_title="Z",
                camera=dict(
                    eye=dict(x=1.5, y=1.5, z=1.5)
                )
            ),
            height=600
        )
        
        return fig
        
    def create_metrics_plot(self):
        """Create metrics visualization"""
        if self.nebula is None:
            return go.Figure()
            
        # Create subplots
        fig = make_subplots(
            rows=2, cols=3,
            subplot_titles=('Energy', 'Entropy', 'Clusters', 
                          'Quantum Coherence', 'Emergence Score', 'FPS'),
            specs=[[{'type': 'indicator'}, {'type': 'indicator'}, {'type': 'indicator'}],
                   [{'type': 'indicator'}, {'type': 'indicator'}, {'type': 'indicator'}]]
        )
        
        metrics = self.nebula.metrics
        
        # Add indicators
        fig.add_trace(go.Indicator(
            mode="gauge+number",
            value=metrics['energy'],
            title={'text': "Energy"},
            gauge={'axis': {'range': [None, 1e-5]}},
        ), row=1, col=1)
        
        fig.add_trace(go.Indicator(
            mode="gauge+number",
            value=metrics['entropy'],
            title={'text': "Entropy"},
            gauge={'axis': {'range': [0, 3]}},
        ), row=1, col=2)
        
        fig.add_trace(go.Indicator(
            mode="number+delta",
            value=metrics['clusters'],
            title={'text': "Clusters"},
        ), row=1, col=3)
        
        fig.add_trace(go.Indicator(
            mode="gauge+number",
            value=metrics['quantum_coherence'],
            title={'text': "Quantum Coherence"},
            gauge={'axis': {'range': [0, 1]}},
        ), row=2, col=1)
        
        fig.add_trace(go.Indicator(
            mode="gauge+number",
            value=metrics['emergence_score'],
            title={'text': "Emergence Score"},
            gauge={'axis': {'range': [0, 10]}},
        ), row=2, col=2)
        
        fig.add_trace(go.Indicator(
            mode="number",
            value=metrics['fps'],
            title={'text': "FPS"},
        ), row=2, col=3)
        
        fig.update_layout(height=400)
        
        return fig
        
    def evolve_step(self):
        """Evolve system by one step"""
        if self.nebula is None:
            return "โš ๏ธ Please create a system first", go.Figure(), go.Figure()
            
        self.nebula.evolve()
        
        # Store metrics in history
        self.history.append({
            'time_step': self.nebula.time_step,
            **self.nebula.metrics
        })
        
        return (f"โœ… Evolved to step {self.nebula.time_step}", 
                self.visualize_3d(), 
                self.create_metrics_plot())
                
    def evolve_continuous(self, steps: int):
        """Evolve system continuously for multiple steps"""
        if self.nebula is None:
            return "โš ๏ธ Please create a system first", go.Figure(), go.Figure()
            
        status_messages = []
        for i in range(steps):
            self.nebula.evolve()
            
            # Store metrics
            self.history.append({
                'time_step': self.nebula.time_step,
                **self.nebula.metrics
            })
            
            if i % 10 == 0:
                status_messages.append(f"Step {self.nebula.time_step}: "
                                      f"Clusters={self.nebula.metrics['clusters']}, "
                                      f"Emergence={self.nebula.metrics['emergence_score']:.3f}")
                
        return ("\\n".join(status_messages[-5:]), 
                self.visualize_3d(), 
                self.create_metrics_plot())
                
    def encode_image_problem(self, image):
        """Encode an image as a problem"""
        if self.nebula is None:
            return "โš ๏ธ Please create a system first"
            
        if image is None:
            return "โš ๏ธ Please upload an image"
            
        # Convert image to grayscale and resize
        from PIL import Image
        img = Image.fromarray(image).convert('L')
        img = img.resize((10, 10))
        
        # Normalize to [0, 1]
        img_array = np.array(img) / 255.0
        
        # Encode in system
        self.nebula.encode_problem(img_array)
        
        return f"โœ… Image encoded into system"
        
    def solve_tsp(self, n_cities: int):
        """Solve Traveling Salesman Problem"""
        if self.nebula is None:
            return "โš ๏ธ Please create a system first", go.Figure()
            
        # Generate random cities
        cities = np.random.random((n_cities, 2))
        
        # Encode as distance matrix
        distances = cdist(cities, cities)
        self.nebula.encode_problem(distances / distances.max())
        
        # Set high temperature for exploration
        self.nebula.temperature = 1000.0
        
        # Evolve with annealing
        best_route = None
        best_distance = float('inf')
        
        for i in range(100):
            self.nebula.evolve()
            
            # Extract solution
            solution = self.nebula.decode_solution()
            
            # Convert to route (simplified)
            route = np.argsort(solution[:n_cities])
            
            # Calculate route distance
            route_distance = sum(distances[route[i], route[(i+1)%n_cities]] 
                               for i in range(n_cities))
                               
            if route_distance < best_distance:
                best_distance = route_distance
                best_route = route
                
        # Visualize solution
        fig = go.Figure()
        
        # Plot cities
        fig.add_trace(go.Scatter(
            x=cities[:, 0],
            y=cities[:, 1],
            mode='markers+text',
            marker=dict(size=10, color='blue'),
            text=[str(i) for i in range(n_cities)],
            textposition='top center',
            name='Cities'
        ))
        
        # Plot route
        if best_route is not None:
            route_x = [cities[i, 0] for i in best_route] + [cities[best_route[0], 0]]
            route_y = [cities[i, 1] for i in best_route] + [cities[best_route[0], 1]]
            fig.add_trace(go.Scatter(
                x=route_x,
                y=route_y,
                mode='lines',
                line=dict(color='red', width=2),
                name='Best Route'
            ))
            
        fig.update_layout(
            title=f"TSP Solution - Distance: {best_distance:.3f}",
            xaxis_title="X",
            yaxis_title="Y",
            height=500
        )
        
        return f"โœ… TSP solved: Best distance = {best_distance:.3f}", fig
        
    def export_data(self):
        """Export system data"""
        if self.nebula is None:
            return None, None
            
        # Export current state
        state_json = json.dumps(self.nebula.export_state(), indent=2)
        
        # Export history as CSV
        if self.history:
            df = pd.DataFrame(self.history)
            csv_data = df.to_csv(index=False)
        else:
            csv_data = "No history data available"
            
        return state_json, csv_data

# Create Gradio interface
def create_gradio_app():
    interface = NebulaInterface()
    
    with gr.Blocks(title="NEBULA EMERGENT - Physical Neural Computing") as app:
        gr.Markdown("""
        # ๐ŸŒŒ NEBULA EMERGENT - Physical Neural Computing System
        ### Revolutionary computing using physical laws for emergent behavior
        **Author:** Francisco Angulo de Lafuente | **Version:** 1.0.0 Python
        
        This system simulates millions of neurons governed by:
        - โš›๏ธ Gravitational dynamics (Barnes-Hut N-body)
        - ๐Ÿ’ก Photon propagation (Quantum optics)
        - ๐Ÿ”ฎ Quantum mechanics (Wave function evolution)
        - ๐ŸŒก๏ธ Thermodynamics (Simulated annealing)
        - ๐Ÿง  Neural dynamics (Hodgkin-Huxley inspired)
        """)
        
        with gr.Tab("๐Ÿš€ System Control"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### System Configuration")
                    n_neurons_slider = gr.Slider(
                        minimum=100, maximum=100000, value=1000, step=100,
                        label="Number of Neurons"
                    )
                    gravity_check = gr.Checkbox(value=True, label="Enable Gravity")
                    quantum_check = gr.Checkbox(value=True, label="Enable Quantum Effects")
                    photon_check = gr.Checkbox(value=True, label="Enable Photon Field")
                    
                    create_btn = gr.Button("๐Ÿ”จ Create System", variant="primary")
                    
                    gr.Markdown("### Evolution Control")
                    step_btn = gr.Button("โ–ถ๏ธ Single Step")
                    
                    with gr.Row():
                        steps_input = gr.Number(value=100, label="Steps")
                        run_btn = gr.Button("๐Ÿƒ Run Multiple Steps", variant="primary")
                        
                    status_text = gr.Textbox(label="Status", lines=5)
                    
                with gr.Column(scale=2):
                    plot_3d = gr.Plot(label="3D Neuron Visualization")
                    metrics_plot = gr.Plot(label="System Metrics")
                    
        with gr.Tab("๐Ÿงฉ Problem Solving"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Image Pattern Recognition")
                    image_input = gr.Image(label="Upload Image")
                    encode_img_btn = gr.Button("๐Ÿ“ฅ Encode Image")
                    
                    gr.Markdown("### Traveling Salesman Problem")
                    cities_slider = gr.Slider(
                        minimum=5, maximum=20, value=10, step=1,
                        label="Number of Cities"
                    )
                    solve_tsp_btn = gr.Button("๐Ÿ—บ๏ธ Solve TSP")
                    
                    problem_status = gr.Textbox(label="Problem Status")
                    
                with gr.Column():
                    solution_plot = gr.Plot(label="Solution Visualization")
                    
        with gr.Tab("๐Ÿ“Š Data Export"):
            gr.Markdown("### Export System Data")
            export_btn = gr.Button("๐Ÿ’พ Export Data", variant="primary")
            
            with gr.Row():
                state_output = gr.Textbox(
                    label="System State (JSON)", 
                    lines=10,
                    max_lines=20
                )
                history_output = gr.Textbox(
                    label="Metrics History (CSV)", 
                    lines=10,
                    max_lines=20
                )
                
        with gr.Tab("๐Ÿ“š Documentation"):
            gr.Markdown("""
            ## How It Works
            
            NEBULA operates on the principle that **computation is physics**. Instead of explicit algorithms:
            
            1. **Encoding**: Problems are encoded as patterns of photon emissions
            2. **Evolution**: The neural galaxy evolves under physical laws
            3. **Emergence**: Stable patterns (attractors) form naturally
            4. **Decoding**: These patterns represent solutions
            
            ### Physical Principles
            
            - **Gravity** creates clustering (pattern formation)
            - **Photons** carry information between regions
            - **Quantum entanglement** enables non-local correlations
            - **Temperature** controls exploration vs exploitation
            - **Resonance** selects for valid solutions
            
            ### Performance
            
            | Neurons | FPS | Time/Step | Memory |
            |---------|-----|-----------|--------|
            | 1,000   | 400 | 2.5ms     | 50MB   |
            | 10,000  | 20  | 50ms      | 400MB  |
            | 100,000 | 2   | 500ms     | 4GB    |
            
            ### Research Papers
            
            - "Emergent Computation Through Physical Dynamics" (2024)
            - "NEBULA: A Million-Neuron Physical Computer" (2024)
            - "Beyond Neural Networks: Computing with Physics" (2025)
            
            ### Contact
            
            - **Author**: Francisco Angulo de Lafuente
            - **Email**: [email protected]
            - **GitHub**: https://github.com/Agnuxo1
            - **HuggingFace**: https://huggingface.co/Agnuxo
            """)
            
        # Connect events
        create_btn.click(
            interface.create_system,
            inputs=[n_neurons_slider, gravity_check, quantum_check, photon_check],
            outputs=[status_text, plot_3d]
        )
        
        step_btn.click(
            interface.evolve_step,
            outputs=[status_text, plot_3d, metrics_plot]
        )
        
        run_btn.click(
            interface.evolve_continuous,
            inputs=[steps_input],
            outputs=[status_text, plot_3d, metrics_plot]
        )
        
        encode_img_btn.click(
            interface.encode_image_problem,
            inputs=[image_input],
            outputs=[problem_status]
        )
        
        solve_tsp_btn.click(
            interface.solve_tsp,
            inputs=[cities_slider],
            outputs=[problem_status, solution_plot]
        )
        
        export_btn.click(
            interface.export_data,
            outputs=[state_output, history_output]
        )
        
    return app

# Main execution
if __name__ == "__main__":
    app = create_gradio_app()
    app.launch(share=True)