DEMO-nebula-emergent / nebula_examples.py
Agnuxo's picture
Upload 6 files
4a0fa9c verified
raw
history blame
13.4 kB
"""
NEBULA EMERGENT - Examples and Use Cases
Author: Francisco Angulo de Lafuente
This file contains examples of how to use the NEBULA EMERGENT system
"""
import numpy as np
import matplotlib.pyplot as plt
from typing import List, Tuple
import json
# Note: These examples assume you have the nebula_emergent module
# In the Space, this is integrated into app.py
def example_basic_usage():
"""Basic example of creating and evolving a NEBULA system"""
print("=" * 50)
print("Example 1: Basic System Creation and Evolution")
print("=" * 50)
# Import the system (in production, this would be from the main module)
from app import NebulaEmergent
# Create a system with 1000 neurons
nebula = NebulaEmergent(n_neurons=1000)
print(f"Created system with {nebula.n_neurons} neurons")
# Enable all physics
nebula.gravity_enabled = True
nebula.quantum_enabled = True
nebula.photon_enabled = True
# Evolve for 100 steps
for i in range(100):
nebula.evolve()
if i % 20 == 0:
metrics = nebula.metrics
print(f"Step {i}: Energy={metrics['energy']:.6f}, "
f"Entropy={metrics['entropy']:.3f}, "
f"Clusters={metrics['clusters']}")
# Extract final state
clusters = nebula.extract_clusters()
print(f"\nFinal state: {len(clusters)} clusters formed")
return nebula
def example_pattern_recognition():
"""Example of using NEBULA for pattern recognition"""
print("=" * 50)
print("Example 2: Pattern Recognition")
print("=" * 50)
from app import NebulaEmergent
# Create system
nebula = NebulaEmergent(n_neurons=5000)
# Create a simple pattern (checkerboard)
pattern = np.array([
[1, 0, 1, 0, 1],
[0, 1, 0, 1, 0],
[1, 0, 1, 0, 1],
[0, 1, 0, 1, 0],
[1, 0, 1, 0, 1]
])
print("Input pattern (5x5 checkerboard):")
print(pattern)
# Encode the pattern
nebula.encode_problem(pattern)
# Evolve until convergence
previous_clusters = 0
stable_count = 0
for i in range(500):
nebula.evolve()
clusters = nebula.extract_clusters()
current_clusters = len(clusters)
# Check for stability
if current_clusters == previous_clusters:
stable_count += 1
else:
stable_count = 0
previous_clusters = current_clusters
# Stop if stable for 20 steps
if stable_count >= 20:
print(f"System stabilized at step {i} with {current_clusters} clusters")
break
if i % 50 == 0:
print(f"Step {i}: {current_clusters} clusters, "
f"Emergence score: {nebula.metrics['emergence_score']:.3f}")
# Decode the solution
solution = nebula.decode_solution()
print(f"\nDecoded solution shape: {solution.shape}")
print(f"Solution values (first 10): {solution[:10]}")
return nebula, solution
def example_optimization_problem():
"""Example of solving an optimization problem"""
print("=" * 50)
print("Example 3: Function Optimization")
print("=" * 50)
from app import NebulaEmergent
# Create system
nebula = NebulaEmergent(n_neurons=2000)
# Define a function to optimize: f(x,y) = -(x^2 + y^2) + 4*sin(x*y)
# We want to find the maximum
# Create a grid of function values
x = np.linspace(-2, 2, 20)
y = np.linspace(-2, 2, 20)
X, Y = np.meshgrid(x, y)
Z = -(X**2 + Y**2) + 4*np.sin(X*Y)
# Normalize to [0, 1]
Z_norm = (Z - Z.min()) / (Z.max() - Z.min())
print(f"Optimizing function: f(x,y) = -(xΒ² + yΒ²) + 4*sin(x*y)")
print(f"Function value range: [{Z.min():.3f}, {Z.max():.3f}]")
# Encode the function landscape
nebula.encode_problem(Z_norm)
# Use simulated annealing
nebula.temperature = 1000.0 # Start with high temperature
best_value = -np.inf
best_position = None
for i in range(200):
nebula.evolve()
# Cool down
nebula.temperature *= 0.98
# Find the neuron with highest activation
activations = [n.activation for n in nebula.neurons]
best_idx = np.argmax(activations)
best_neuron = nebula.neurons[best_idx]
if best_neuron.activation > best_value:
best_value = best_neuron.activation
best_position = best_neuron.position
if i % 40 == 0:
print(f"Step {i}: Temperature={nebula.temperature:.1f}, "
f"Best value={best_value:.3f}")
print(f"\nOptimization complete!")
print(f"Best position found: {best_position}")
print(f"Best value: {best_value:.3f}")
return nebula, best_position
def example_traveling_salesman():
"""Example of solving TSP with NEBULA"""
print("=" * 50)
print("Example 4: Traveling Salesman Problem")
print("=" * 50)
from app import NebulaEmergent
from scipy.spatial.distance import cdist
# Create system
nebula = NebulaEmergent(n_neurons=3000)
# Generate random cities
n_cities = 8
cities = np.random.random((n_cities, 2))
print(f"Solving TSP for {n_cities} cities")
# Calculate distance matrix
distances = cdist(cities, cities)
# Encode distances (inverted so shorter = higher activation)
encoded_distances = 1.0 / (distances + 0.1)
np.fill_diagonal(encoded_distances, 0)
# Flatten and encode
nebula.encode_problem(encoded_distances)
# High temperature for exploration
nebula.temperature = 2000.0
best_route = None
best_distance = float('inf')
for i in range(300):
nebula.evolve()
# Anneal
nebula.temperature *= 0.97
# Extract solution
solution = nebula.decode_solution()
# Convert to route (simplified)
if len(solution) >= n_cities:
route = np.argsort(solution[:n_cities])
# Calculate route distance
route_distance = sum(
distances[route[j], route[(j+1) % n_cities]]
for j in range(n_cities)
)
if route_distance < best_distance:
best_distance = route_distance
best_route = route
if i % 50 == 0:
print(f"Step {i}: Best distance={best_distance:.3f}, "
f"Temperature={nebula.temperature:.1f}")
print(f"\nTSP Solution found!")
print(f"Best route: {best_route}")
print(f"Total distance: {best_distance:.3f}")
return nebula, best_route, cities
def example_quantum_computation():
"""Example of using quantum features"""
print("=" * 50)
print("Example 5: Quantum Computation Features")
print("=" * 50)
from app import NebulaEmergent
# Create system with enhanced quantum features
nebula = NebulaEmergent(n_neurons=1000)
nebula.quantum_enabled = True
nebula.gravity_enabled = False # Disable gravity to focus on quantum
nebula.photon_enabled = True
print("Quantum processor initialized with {} qubits".format(
nebula.quantum_processor.n_qubits))
# Create entangled states
print("\nCreating quantum superposition and entanglement...")
for i in range(100):
nebula.evolve()
if i % 20 == 0:
coherence = nebula.metrics['quantum_coherence']
print(f"Step {i}: Quantum coherence={coherence:.3f}")
# Measure quantum state
outcome = nebula.quantum_processor.measure()
print(f"\nQuantum measurement outcome: {bin(outcome)}")
# Check for quantum correlations
entangled_neurons = [
i for i, n in enumerate(nebula.neurons)
if n.entanglement is not None
]
print(f"Number of entangled neurons: {len(entangled_neurons)}")
return nebula
def example_emergent_behavior():
"""Example demonstrating emergent behavior"""
print("=" * 50)
print("Example 6: Emergent Behavior and Self-Organization")
print("=" * 50)
from app import NebulaEmergent
# Create a large system
nebula = NebulaEmergent(n_neurons=5000)
# Start with random initial conditions
print("Starting with random initial conditions...")
# Track emergence over time
emergence_history = []
cluster_history = []
for i in range(500):
nebula.evolve()
if i % 10 == 0:
emergence_history.append(nebula.metrics['emergence_score'])
cluster_history.append(nebula.metrics['clusters'])
if i % 100 == 0:
print(f"Step {i}: "
f"Emergence={nebula.metrics['emergence_score']:.3f}, "
f"Clusters={nebula.metrics['clusters']}, "
f"Entropy={nebula.metrics['entropy']:.3f}")
# Analyze emergent patterns
print("\n" + "=" * 30)
print("Emergent Behavior Analysis:")
print("=" * 30)
print(f"Initial emergence score: {emergence_history[0]:.3f}")
print(f"Final emergence score: {emergence_history[-1]:.3f}")
print(f"Maximum emergence: {max(emergence_history):.3f}")
print(f"\nInitial clusters: {cluster_history[0]}")
print(f"Final clusters: {cluster_history[-1]}")
print(f"Maximum clusters: {max(cluster_history)}")
# Check for phase transitions
emergence_gradient = np.gradient(emergence_history)
phase_transitions = np.where(np.abs(emergence_gradient) > 0.5)[0]
if len(phase_transitions) > 0:
print(f"\nPhase transitions detected at steps: "
f"{phase_transitions * 10}")
else:
print("\nNo significant phase transitions detected")
return nebula, emergence_history, cluster_history
def example_data_export():
"""Example of exporting and analyzing data"""
print("=" * 50)
print("Example 7: Data Export and Analysis")
print("=" * 50)
from app import NebulaEmergent
import pandas as pd
# Create and evolve system
nebula = NebulaEmergent(n_neurons=500)
# Collect data over time
data_history = []
for i in range(100):
nebula.evolve()
# Collect comprehensive data
state = {
'time_step': i,
'energy': nebula.metrics['energy'],
'entropy': nebula.metrics['entropy'],
'clusters': nebula.metrics['clusters'],
'quantum_coherence': nebula.metrics['quantum_coherence'],
'emergence_score': nebula.metrics['emergence_score'],
'fps': nebula.metrics['fps'],
'temperature': nebula.temperature,
'mean_activation': np.mean([n.activation for n in nebula.neurons]),
'std_activation': np.std([n.activation for n in nebula.neurons])
}
data_history.append(state)
# Convert to DataFrame
df = pd.DataFrame(data_history)
print("Data collection complete!")
print("\nDataFrame shape:", df.shape)
print("\nDataFrame columns:", df.columns.tolist())
print("\nSummary statistics:")
print(df.describe())
# Export to different formats
print("\nExporting data...")
# CSV export
csv_data = df.to_csv(index=False)
print(f"CSV data size: {len(csv_data)} bytes")
# JSON export
json_data = df.to_json(orient='records', indent=2)
print(f"JSON data size: {len(json_data)} bytes")
# Save sample files
with open('nebula_data.csv', 'w') as f:
f.write(csv_data)
print("Saved: nebula_data.csv")
with open('nebula_data.json', 'w') as f:
f.write(json_data)
print("Saved: nebula_data.json")
return df
def run_all_examples():
"""Run all examples in sequence"""
print("\n" + "🌌" * 25)
print("NEBULA EMERGENT - Complete Example Suite")
print("🌌" * 25 + "\n")
examples = [
("Basic Usage", example_basic_usage),
("Pattern Recognition", example_pattern_recognition),
("Optimization", example_optimization_problem),
("Traveling Salesman", example_traveling_salesman),
("Quantum Features", example_quantum_computation),
("Emergent Behavior", example_emergent_behavior),
("Data Export", example_data_export)
]
results = {}
for name, func in examples:
try:
print(f"\n{'='*60}")
print(f"Running: {name}")
print('='*60)
result = func()
results[name] = "βœ… Success"
print(f"\n{name} completed successfully!")
except Exception as e:
results[name] = f"❌ Error: {str(e)}"
print(f"\n{name} failed: {e}")
print("\nPress Enter to continue to next example...")
input()
# Summary
print("\n" + "=" * 60)
print("EXAMPLE SUITE SUMMARY")
print("=" * 60)
for name, status in results.items():
print(f"{name}: {status}")
print("\nπŸŽ‰ Example suite completed!")
if __name__ == "__main__":
# Run all examples
run_all_examples()