""" NEBULA EMERGENT - Examples and Use Cases Author: Francisco Angulo de Lafuente This file contains examples of how to use the NEBULA EMERGENT system """ import numpy as np import matplotlib.pyplot as plt from typing import List, Tuple import json # Note: These examples assume you have the nebula_emergent module # In the Space, this is integrated into app.py def example_basic_usage(): """Basic example of creating and evolving a NEBULA system""" print("=" * 50) print("Example 1: Basic System Creation and Evolution") print("=" * 50) # Import the system (in production, this would be from the main module) from app import NebulaEmergent # Create a system with 1000 neurons nebula = NebulaEmergent(n_neurons=1000) print(f"Created system with {nebula.n_neurons} neurons") # Enable all physics nebula.gravity_enabled = True nebula.quantum_enabled = True nebula.photon_enabled = True # Evolve for 100 steps for i in range(100): nebula.evolve() if i % 20 == 0: metrics = nebula.metrics print(f"Step {i}: Energy={metrics['energy']:.6f}, " f"Entropy={metrics['entropy']:.3f}, " f"Clusters={metrics['clusters']}") # Extract final state clusters = nebula.extract_clusters() print(f"\nFinal state: {len(clusters)} clusters formed") return nebula def example_pattern_recognition(): """Example of using NEBULA for pattern recognition""" print("=" * 50) print("Example 2: Pattern Recognition") print("=" * 50) from app import NebulaEmergent # Create system nebula = NebulaEmergent(n_neurons=5000) # Create a simple pattern (checkerboard) pattern = np.array([ [1, 0, 1, 0, 1], [0, 1, 0, 1, 0], [1, 0, 1, 0, 1], [0, 1, 0, 1, 0], [1, 0, 1, 0, 1] ]) print("Input pattern (5x5 checkerboard):") print(pattern) # Encode the pattern nebula.encode_problem(pattern) # Evolve until convergence previous_clusters = 0 stable_count = 0 for i in range(500): nebula.evolve() clusters = nebula.extract_clusters() current_clusters = len(clusters) # Check for stability if current_clusters == previous_clusters: stable_count += 1 else: stable_count = 0 previous_clusters = current_clusters # Stop if stable for 20 steps if stable_count >= 20: print(f"System stabilized at step {i} with {current_clusters} clusters") break if i % 50 == 0: print(f"Step {i}: {current_clusters} clusters, " f"Emergence score: {nebula.metrics['emergence_score']:.3f}") # Decode the solution solution = nebula.decode_solution() print(f"\nDecoded solution shape: {solution.shape}") print(f"Solution values (first 10): {solution[:10]}") return nebula, solution def example_optimization_problem(): """Example of solving an optimization problem""" print("=" * 50) print("Example 3: Function Optimization") print("=" * 50) from app import NebulaEmergent # Create system nebula = NebulaEmergent(n_neurons=2000) # Define a function to optimize: f(x,y) = -(x^2 + y^2) + 4*sin(x*y) # We want to find the maximum # Create a grid of function values x = np.linspace(-2, 2, 20) y = np.linspace(-2, 2, 20) X, Y = np.meshgrid(x, y) Z = -(X**2 + Y**2) + 4*np.sin(X*Y) # Normalize to [0, 1] Z_norm = (Z - Z.min()) / (Z.max() - Z.min()) print(f"Optimizing function: f(x,y) = -(x² + y²) + 4*sin(x*y)") print(f"Function value range: [{Z.min():.3f}, {Z.max():.3f}]") # Encode the function landscape nebula.encode_problem(Z_norm) # Use simulated annealing nebula.temperature = 1000.0 # Start with high temperature best_value = -np.inf best_position = None for i in range(200): nebula.evolve() # Cool down nebula.temperature *= 0.98 # Find the neuron with highest activation activations = [n.activation for n in nebula.neurons] best_idx = np.argmax(activations) best_neuron = nebula.neurons[best_idx] if best_neuron.activation > best_value: best_value = best_neuron.activation best_position = best_neuron.position if i % 40 == 0: print(f"Step {i}: Temperature={nebula.temperature:.1f}, " f"Best value={best_value:.3f}") print(f"\nOptimization complete!") print(f"Best position found: {best_position}") print(f"Best value: {best_value:.3f}") return nebula, best_position def example_traveling_salesman(): """Example of solving TSP with NEBULA""" print("=" * 50) print("Example 4: Traveling Salesman Problem") print("=" * 50) from app import NebulaEmergent from scipy.spatial.distance import cdist # Create system nebula = NebulaEmergent(n_neurons=3000) # Generate random cities n_cities = 8 cities = np.random.random((n_cities, 2)) print(f"Solving TSP for {n_cities} cities") # Calculate distance matrix distances = cdist(cities, cities) # Encode distances (inverted so shorter = higher activation) encoded_distances = 1.0 / (distances + 0.1) np.fill_diagonal(encoded_distances, 0) # Flatten and encode nebula.encode_problem(encoded_distances) # High temperature for exploration nebula.temperature = 2000.0 best_route = None best_distance = float('inf') for i in range(300): nebula.evolve() # Anneal nebula.temperature *= 0.97 # Extract solution solution = nebula.decode_solution() # Convert to route (simplified) if len(solution) >= n_cities: route = np.argsort(solution[:n_cities]) # Calculate route distance route_distance = sum( distances[route[j], route[(j+1) % n_cities]] for j in range(n_cities) ) if route_distance < best_distance: best_distance = route_distance best_route = route if i % 50 == 0: print(f"Step {i}: Best distance={best_distance:.3f}, " f"Temperature={nebula.temperature:.1f}") print(f"\nTSP Solution found!") print(f"Best route: {best_route}") print(f"Total distance: {best_distance:.3f}") return nebula, best_route, cities def example_quantum_computation(): """Example of using quantum features""" print("=" * 50) print("Example 5: Quantum Computation Features") print("=" * 50) from app import NebulaEmergent # Create system with enhanced quantum features nebula = NebulaEmergent(n_neurons=1000) nebula.quantum_enabled = True nebula.gravity_enabled = False # Disable gravity to focus on quantum nebula.photon_enabled = True print("Quantum processor initialized with {} qubits".format( nebula.quantum_processor.n_qubits)) # Create entangled states print("\nCreating quantum superposition and entanglement...") for i in range(100): nebula.evolve() if i % 20 == 0: coherence = nebula.metrics['quantum_coherence'] print(f"Step {i}: Quantum coherence={coherence:.3f}") # Measure quantum state outcome = nebula.quantum_processor.measure() print(f"\nQuantum measurement outcome: {bin(outcome)}") # Check for quantum correlations entangled_neurons = [ i for i, n in enumerate(nebula.neurons) if n.entanglement is not None ] print(f"Number of entangled neurons: {len(entangled_neurons)}") return nebula def example_emergent_behavior(): """Example demonstrating emergent behavior""" print("=" * 50) print("Example 6: Emergent Behavior and Self-Organization") print("=" * 50) from app import NebulaEmergent # Create a large system nebula = NebulaEmergent(n_neurons=5000) # Start with random initial conditions print("Starting with random initial conditions...") # Track emergence over time emergence_history = [] cluster_history = [] for i in range(500): nebula.evolve() if i % 10 == 0: emergence_history.append(nebula.metrics['emergence_score']) cluster_history.append(nebula.metrics['clusters']) if i % 100 == 0: print(f"Step {i}: " f"Emergence={nebula.metrics['emergence_score']:.3f}, " f"Clusters={nebula.metrics['clusters']}, " f"Entropy={nebula.metrics['entropy']:.3f}") # Analyze emergent patterns print("\n" + "=" * 30) print("Emergent Behavior Analysis:") print("=" * 30) print(f"Initial emergence score: {emergence_history[0]:.3f}") print(f"Final emergence score: {emergence_history[-1]:.3f}") print(f"Maximum emergence: {max(emergence_history):.3f}") print(f"\nInitial clusters: {cluster_history[0]}") print(f"Final clusters: {cluster_history[-1]}") print(f"Maximum clusters: {max(cluster_history)}") # Check for phase transitions emergence_gradient = np.gradient(emergence_history) phase_transitions = np.where(np.abs(emergence_gradient) > 0.5)[0] if len(phase_transitions) > 0: print(f"\nPhase transitions detected at steps: " f"{phase_transitions * 10}") else: print("\nNo significant phase transitions detected") return nebula, emergence_history, cluster_history def example_data_export(): """Example of exporting and analyzing data""" print("=" * 50) print("Example 7: Data Export and Analysis") print("=" * 50) from app import NebulaEmergent import pandas as pd # Create and evolve system nebula = NebulaEmergent(n_neurons=500) # Collect data over time data_history = [] for i in range(100): nebula.evolve() # Collect comprehensive data state = { 'time_step': i, 'energy': nebula.metrics['energy'], 'entropy': nebula.metrics['entropy'], 'clusters': nebula.metrics['clusters'], 'quantum_coherence': nebula.metrics['quantum_coherence'], 'emergence_score': nebula.metrics['emergence_score'], 'fps': nebula.metrics['fps'], 'temperature': nebula.temperature, 'mean_activation': np.mean([n.activation for n in nebula.neurons]), 'std_activation': np.std([n.activation for n in nebula.neurons]) } data_history.append(state) # Convert to DataFrame df = pd.DataFrame(data_history) print("Data collection complete!") print("\nDataFrame shape:", df.shape) print("\nDataFrame columns:", df.columns.tolist()) print("\nSummary statistics:") print(df.describe()) # Export to different formats print("\nExporting data...") # CSV export csv_data = df.to_csv(index=False) print(f"CSV data size: {len(csv_data)} bytes") # JSON export json_data = df.to_json(orient='records', indent=2) print(f"JSON data size: {len(json_data)} bytes") # Save sample files with open('nebula_data.csv', 'w') as f: f.write(csv_data) print("Saved: nebula_data.csv") with open('nebula_data.json', 'w') as f: f.write(json_data) print("Saved: nebula_data.json") return df def run_all_examples(): """Run all examples in sequence""" print("\n" + "🌌" * 25) print("NEBULA EMERGENT - Complete Example Suite") print("🌌" * 25 + "\n") examples = [ ("Basic Usage", example_basic_usage), ("Pattern Recognition", example_pattern_recognition), ("Optimization", example_optimization_problem), ("Traveling Salesman", example_traveling_salesman), ("Quantum Features", example_quantum_computation), ("Emergent Behavior", example_emergent_behavior), ("Data Export", example_data_export) ] results = {} for name, func in examples: try: print(f"\n{'='*60}") print(f"Running: {name}") print('='*60) result = func() results[name] = "āœ… Success" print(f"\n{name} completed successfully!") except Exception as e: results[name] = f"āŒ Error: {str(e)}" print(f"\n{name} failed: {e}") print("\nPress Enter to continue to next example...") input() # Summary print("\n" + "=" * 60) print("EXAMPLE SUITE SUMMARY") print("=" * 60) for name, status in results.items(): print(f"{name}: {status}") print("\nšŸŽ‰ Example suite completed!") if __name__ == "__main__": # Run all examples run_all_examples()