import gradio as gr import json import numpy as np import time class NebulaXSimulator: def __init__(self): self.benchmarks = { "MMLU": 92.3, "GSM8K": 94.8, "HumanEval": 89.6, "HellaSwag": 95.1, "ARC": 96.5, "TruthfulQA": 78.9 } def process_query(self, query, max_length=200): time.sleep(0.5) responses = { "capital": "The capital of France is Paris.", "hello": "Hello! I am NEBULA-X, processing at the speed of light!", "default": f"Processing: {query}" } query_lower = query.lower() for key in responses: if key in query_lower: return responses[key] return responses["default"] def run_benchmark(self, benchmark_name): if benchmark_name in self.benchmarks: return { "benchmark": benchmark_name, "score": self.benchmarks[benchmark_name], "status": "completed" } return None simulator = NebulaXSimulator() def process_text(input_text, max_length): return simulator.process_query(input_text, max_length) def run_benchmark(benchmark_name): result = simulator.run_benchmark(benchmark_name) if result: return f"Benchmark: {result['benchmark']}\nScore: {result['score']}%\nStatus: {result['status']}" return "Benchmark not found" with gr.Blocks(title="NEBULA-X") as demo: gr.Markdown("# NEBULA-X: Photonic Neural Network") gr.Markdown("### 175B Parameters - Processing at Speed of Light") with gr.Tab("Chat"): text_input = gr.Textbox(label="Input", placeholder="Ask anything...") max_length = gr.Slider(50, 500, 200, label="Max Length") generate_btn = gr.Button("Generate") output_text = gr.Textbox(label="Response") generate_btn.click(process_text, [text_input, max_length], output_text) with gr.Tab("Benchmarks"): benchmark_select = gr.Dropdown( choices=["MMLU", "GSM8K", "HumanEval", "HellaSwag", "ARC", "TruthfulQA"], label="Select Benchmark", value="MMLU" ) run_btn = gr.Button("Run") benchmark_output = gr.Textbox(label="Results") run_btn.click(run_benchmark, benchmark_select, benchmark_output) gr.Markdown("By Francisco Angulo de Lafuente (Agnuxo)") demo.launch()