|
Specify from_tf=True to convert a checkpoint from TensorFlow to PyTorch: |
|
|
|
pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True) |
|
pt_model.save_pretrained("path/to/awesome-name-you-picked") |
|
`` |
|
</pt> |
|
<tf> |
|
Specifyfrom_pt=True` to convert a checkpoint from PyTorch to TensorFlow: |
|
|
|
tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True) |
|
|
|
Then you can save your new TensorFlow model with its new checkpoint: |
|
|
|
tf_model.save_pretrained("path/to/awesome-name-you-picked") |
|
|
|
If a model is available in Flax, you can also convert a checkpoint from PyTorch to Flax: |
|
|
|
flax_model = FlaxDistilBertForSequenceClassification.from_pretrained( |
|
"path/to/awesome-name-you-picked", from_pt=True |
|
) |
|
|
|
Push a model during training |
|
|
|
Sharing a model to the Hub is as simple as adding an extra parameter or callback. |