|
|
|
Hyperparameter Search using Trainer API |
|
🤗 Transformers provides a [Trainer] class optimized for training 🤗 Transformers models, making it easier to start training without manually writing your own training loop. The [Trainer] provides API for hyperparameter search. This doc shows how to enable it in example. |
|
Hyperparameter Search backend |
|
[Trainer] supports four hyperparameter search backends currently: |
|
optuna, sigopt, raytune and wandb. |
|
you should install them before using them as the hyperparameter search backend |
|
|
|
pip install optuna/sigopt/wandb/ray[tune] |
|
How to enable Hyperparameter search in example |
|
Define the hyperparameter search space, different backends need different format. |
|
For sigopt, see sigopt object_parameter, it's like following: |
|
|
|
def sigopt_hp_space(trial): |
|
return [ |
|
{"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"}, |
|
{ |
|
"categorical_values": ["16", "32", "64", "128"], |
|
"name": "per_device_train_batch_size", |
|
"type": "categorical", |
|
}, |
|
] |
|
|
|
For optuna, see optuna object_parameter, it's like following: |
|
|
|
def optuna_hp_space(trial): |
|
return { |
|
"learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True), |
|
"per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]), |
|
} |
|
|
|
Optuna provides multi-objective HPO. You can pass direction in hyperparameter_search and define your own compute_objective to return multiple objective values. The Pareto Front (List[BestRun]) will be returned in hyperparameter_search, you should refer to the test case TrainerHyperParameterMultiObjectOptunaIntegrationTest in test_trainer. It's like following |
|
|
|
best_trials = trainer.hyperparameter_search( |
|
direction=["minimize", "maximize"], |
|
backend="optuna", |
|
hp_space=optuna_hp_space, |
|
n_trials=20, |
|
compute_objective=compute_objective, |
|
) |
|
|
|
For raytune, see raytune object_parameter, it's like following: |
|
|
|
def ray_hp_space(trial): |
|
return { |
|
"learning_rate": tune.loguniform(1e-6, 1e-4), |
|
"per_device_train_batch_size": tune.choice([16, 32, 64, 128]), |
|
} |
|
|
|
For wandb, see wandb object_parameter, it's like following: |
|
|
|
def wandb_hp_space(trial): |
|
return { |
|
"method": "random", |
|
"metric": {"name": "objective", "goal": "minimize"}, |
|
"parameters": { |
|
"learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4}, |
|
"per_device_train_batch_size": {"values": [16, 32, 64, 128]}, |
|
}, |
|
} |
|
|
|
Define a model_init function and pass it to the [Trainer], as an example: |
|
|
|
def model_init(trial): |
|
return AutoModelForSequenceClassification.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_tf=bool(".ckpt" in model_args.model_name_or_path), |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
Create a [Trainer] with your model_init function, training arguments, training and test datasets, and evaluation function: |
|
|
|
trainer = Trainer( |
|
model=None, |
|
args=training_args, |
|
train_dataset=small_train_dataset, |
|
eval_dataset=small_eval_dataset, |
|
compute_metrics=compute_metrics, |
|
tokenizer=tokenizer, |
|
model_init=model_init, |
|
data_collator=data_collator, |
|
) |
|
|
|
Call hyperparameter search, get the best trial parameters, backend could be "optuna"/"sigopt"/"wandb"/"ray". direction can be"minimize" or "maximize", which indicates whether to optimize greater or lower objective. |
|
You could define your own compute_objective function, if not defined, the default compute_objective will be called, and the sum of eval metric like f1 is returned as objective value. |
|
|
|
best_trial = trainer.hyperparameter_search( |
|
direction="maximize", |
|
backend="optuna", |
|
hp_space=optuna_hp_space, |
|
n_trials=20, |
|
compute_objective=compute_objective, |
|
) |
|
|
|
Hyperparameter search For DDP finetune |
|
Currently, Hyperparameter search for DDP is enabled for optuna and sigopt. Only the rank-zero process will generate the search trial and pass the argument to other ranks. |