In addition to the sharding strategies and wrapping options specified above, you can add the parameters shown below to the file. yaml xla: True # must be set to True to enable PyTorch/XLA xla_fsdp_settings: # XLA-specific FSDP parameters xla_fsdp_grad_ckpt: True # use gradient checkpointing The xla_fsdp_settings allow you to configure additional XLA-specific parameters for FSDP. Launch training An example FSDP configuration file may look like: yaml compute_environment: LOCAL_MACHINE debug: false distributed_type: FSDP downcast_bf16: 'no' fsdp_config: fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_backward_prefetch_policy: BACKWARD_PRE fsdp_cpu_ram_efficient_loading: true fsdp_forward_prefetch: false fsdp_offload_params: true fsdp_sharding_strategy: 1 fsdp_state_dict_type: SHARDED_STATE_DICT fsdp_sync_module_states: true fsdp_transformer_layer_cls_to_wrap: BertLayer fsdp_use_orig_params: true machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 2 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false To launch training, run the accelerate launch command and it'll automatically use the configuration file you previously created with accelerate config. accelerate launch my-trainer-script.py accelerate launch --fsdp="full shard" --fsdp_config="path/to/fsdp_config/ my-trainer-script.py Next steps FSDP can be a powerful tool for training really large models and you have access to more than one GPU or TPU.