Spaces:
Running
Running
Delete app.py
Browse files
app.py
DELETED
@@ -1,109 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
import gradio as gr
|
6 |
-
from diffusers import StableDiffusionPipeline
|
7 |
-
import paramiko
|
8 |
-
from huggingface_hub import login
|
9 |
-
|
10 |
-
# Hugging Face Token
|
11 |
-
HF_TOKEN = os.getenv('HF_TOKEN', '').strip()
|
12 |
-
if not HF_TOKEN:
|
13 |
-
raise ValueError("HUGGING_TOKEN is not set. Please set the token as an environment variable.")
|
14 |
-
|
15 |
-
# Hugging Face Login
|
16 |
-
login(token=HF_TOKEN)
|
17 |
-
|
18 |
-
# Konfiguration
|
19 |
-
STORAGE_DOMAIN = os.getenv('STORAGE_DOMAIN', '').strip() # SFTP Server Domain
|
20 |
-
STORAGE_USER = os.getenv('STORAGE_USER', '').strip() # SFTP User
|
21 |
-
STORAGE_PSWD = os.getenv('STORAGE_PSWD', '').strip() # SFTP Passwort
|
22 |
-
STORAGE_PORT = int(os.getenv('STORAGE_PORT', '22').strip()) # SFTP Port
|
23 |
-
STORAGE_SECRET = os.getenv('STORAGE_SECRET', '').strip() # Secret Token
|
24 |
-
|
25 |
-
# Modell-Optionen - können angepasst werden
|
26 |
-
MODEL_REPO = os.getenv('MODEL_REPO', 'stabilityai/stable-diffusion-3-medium-diffusers') # Standard-Modell
|
27 |
-
TORCH_DTYPE = os.getenv('TORCH_DTYPE', 'float16') # Standard-Präzision
|
28 |
-
|
29 |
-
# Modell laden
|
30 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
-
torch_dtype = torch.float16 if TORCH_DTYPE == 'float16' else torch.float32
|
32 |
-
|
33 |
-
try:
|
34 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
35 |
-
MODEL_REPO,
|
36 |
-
torch_dtype=torch_dtype
|
37 |
-
).to(device)
|
38 |
-
except Exception as e:
|
39 |
-
raise RuntimeError(f"Failed to load the model. Ensure the token has access to the repo. Error: {e}")
|
40 |
-
|
41 |
-
# Maximalwerte
|
42 |
-
MAX_SEED = np.iinfo(np.int32).max
|
43 |
-
MAX_IMAGE_SIZE = 1344
|
44 |
-
|
45 |
-
# SFTP-Funktion
|
46 |
-
def upload_to_sftp(local_file, remote_path):
|
47 |
-
try:
|
48 |
-
transport = paramiko.Transport((STORAGE_DOMAIN, STORAGE_PORT))
|
49 |
-
transport.connect(username=STORAGE_USER, password=STORAGE_PSWD)
|
50 |
-
sftp = paramiko.SFTPClient.from_transport(transport)
|
51 |
-
sftp.put(local_file, remote_path)
|
52 |
-
sftp.close()
|
53 |
-
transport.close()
|
54 |
-
print(f"File {local_file} successfully uploaded to {remote_path}")
|
55 |
-
return True
|
56 |
-
except Exception as e:
|
57 |
-
print(f"Error during SFTP upload: {e}")
|
58 |
-
return False
|
59 |
-
|
60 |
-
# Inferenz-Funktion
|
61 |
-
def infer(prompt, width, height, guidance_scale, num_inference_steps, seed, randomize_seed):
|
62 |
-
if randomize_seed:
|
63 |
-
seed = random.randint(0, MAX_SEED)
|
64 |
-
|
65 |
-
generator = torch.manual_seed(seed)
|
66 |
-
image = pipe(
|
67 |
-
prompt,
|
68 |
-
guidance_scale=guidance_scale,
|
69 |
-
num_inference_steps=num_inference_steps,
|
70 |
-
width=width,
|
71 |
-
height=height,
|
72 |
-
generator=generator
|
73 |
-
).images[0]
|
74 |
-
|
75 |
-
# Speichere Bild lokal
|
76 |
-
local_file = f"/tmp/generated_image_{seed}.png"
|
77 |
-
image.save(local_file)
|
78 |
-
|
79 |
-
# Hochladen zu SFTP
|
80 |
-
remote_path = f"/uploads/generated_image_{seed}.png"
|
81 |
-
if upload_to_sftp(local_file, remote_path):
|
82 |
-
os.remove(local_file)
|
83 |
-
return f"Image uploaded to {remote_path}", seed
|
84 |
-
else:
|
85 |
-
return "Failed to upload image", seed
|
86 |
-
|
87 |
-
# App-Titel mit Modell- und Präzisionsinformationen
|
88 |
-
APP_TITLE = f"### Stable Diffusion - {os.path.basename(MODEL_REPO)} ({TORCH_DTYPE} auf {device})"
|
89 |
-
|
90 |
-
# Gradio-App
|
91 |
-
with gr.Blocks() as demo:
|
92 |
-
gr.Markdown(APP_TITLE)
|
93 |
-
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here")
|
94 |
-
width = gr.Slider(256, MAX_IMAGE_SIZE, step=64, value=512, label="Width")
|
95 |
-
height = gr.Slider(256, MAX_IMAGE_SIZE, step=64, value=512, label="Height")
|
96 |
-
guidance_scale = gr.Slider(0.0, 10.0, step=0.1, value=7.5, label="Guidance Scale")
|
97 |
-
num_inference_steps = gr.Slider(1, 50, step=1, value=25, label="Inference Steps")
|
98 |
-
seed = gr.Number(value=42, label="Seed")
|
99 |
-
randomize_seed = gr.Checkbox(value=False, label="Randomize Seed")
|
100 |
-
generate_button = gr.Button("Generate Image")
|
101 |
-
output = gr.Text(label="Output")
|
102 |
-
|
103 |
-
generate_button.click(
|
104 |
-
infer,
|
105 |
-
inputs=[prompt, width, height, guidance_scale, num_inference_steps, seed, randomize_seed],
|
106 |
-
outputs=[output, seed]
|
107 |
-
)
|
108 |
-
|
109 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|