File size: 33,960 Bytes
5e5e890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 |
#!/usr/bin/env python3
"""
LinkedIn Profile Enhancer - Gradio Interface (app2.py)
A beautiful web interface for the LinkedIn Profile Enhancer using Gradio
"""
import sys
import os
import time
import json
from typing import Dict, Any, Tuple, Optional
import gradio as gr
from PIL import Image
import requests
from io import BytesIO
# Add project root to path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from agents.orchestrator import ProfileOrchestrator
from agents.scraper_agent import ScraperAgent
from agents.analyzer_agent import AnalyzerAgent
from agents.content_agent import ContentAgent
class LinkedInEnhancerGradio:
"""Gradio Interface for LinkedIn Profile Enhancer"""
def __init__(self):
self.orchestrator = ProfileOrchestrator()
self.current_profile_data = None
self.current_analysis = None
self.current_suggestions = None
def test_api_connections(self) -> Tuple[str, str]:
"""Test API connections and return status"""
apify_status = "β Failed"
openai_status = "β Failed"
try:
scraper = ScraperAgent()
if scraper.test_apify_connection():
apify_status = "β
Connected"
except Exception as e:
apify_status = f"β Error: {str(e)[:50]}..."
try:
content_agent = ContentAgent()
if content_agent.test_openai_connection():
openai_status = "β
Connected"
except Exception as e:
openai_status = f"β Error: {str(e)[:50]}..."
return apify_status, openai_status
def load_profile_image(self, image_url: str) -> Optional[Image.Image]:
"""Load profile image from URL"""
try:
if image_url:
response = requests.get(image_url, timeout=10)
if response.status_code == 200:
return Image.open(BytesIO(response.content))
except Exception as e:
print(f"Error loading image: {e}")
return None
def enhance_linkedin_profile(self, linkedin_url: str, job_description: str = "") -> Tuple[str, str, str, str, str, str, str, str, Optional[Image.Image]]:
"""Complete LinkedIn profile enhancement with extraction, analysis, and suggestions"""
if not linkedin_url.strip():
return "β Error", "Please enter a LinkedIn profile URL", "", "", "", "", "", "", None
if not any(pattern in linkedin_url.lower() for pattern in ['linkedin.com/in/', 'www.linkedin.com/in/']):
return "β Error", "Please enter a valid LinkedIn profile URL", "", "", "", "", "", "", None
try:
# Step 1: Extract profile data
self.orchestrator.memory.session_data.clear()
profile_data = self.orchestrator.scraper.extract_profile_data(linkedin_url)
self.current_profile_data = profile_data
# Format basic info
basic_info = f"""
**Name:** {profile_data.get('name', 'N/A')}
**Headline:** {profile_data.get('headline', 'N/A')}
**Location:** {profile_data.get('location', 'N/A')}
**Connections:** {profile_data.get('connections', 'N/A')}
**Followers:** {profile_data.get('followers', 'N/A')}
**Email:** {profile_data.get('email', 'N/A')}
**Current Job:** {profile_data.get('job_title', 'N/A')} at {profile_data.get('company_name', 'N/A')}
"""
# Format about section
about_section = profile_data.get('about', 'No about section available')
# Format experience
experience_text = ""
for i, exp in enumerate(profile_data.get('experience', [])[:5], 1):
experience_text += f"""
**{i}. {exp.get('title', 'Position')}**
- Company: {exp.get('company', 'N/A')}
- Duration: {exp.get('duration', 'N/A')}
- Location: {exp.get('location', 'N/A')}
- Current: {'Yes' if exp.get('is_current') else 'No'}
"""
if exp.get('description'):
experience_text += f"- Description: {exp.get('description')[:200]}...\n"
experience_text += "\n"
# Format education and skills
education_text = ""
for i, edu in enumerate(profile_data.get('education', []), 1):
education_text += f"""
**{i}. {edu.get('school', 'School')}**
- Degree: {edu.get('degree', 'N/A')}
- Field: {edu.get('field', 'N/A')}
- Year: {edu.get('year', 'N/A')}
- Grade: {edu.get('grade', 'N/A')}
"""
skills_text = ", ".join(profile_data.get('skills', [])[:20])
if len(profile_data.get('skills', [])) > 20:
skills_text += f" ... and {len(profile_data.get('skills', [])) - 20} more"
details_text = f"""
## π Education
{education_text if education_text else "No education information available"}
## π οΈ Skills
{skills_text if skills_text else "No skills information available"}
## π Certifications
{len(profile_data.get('certifications', []))} certifications found
## π Additional Data
- Projects: {len(profile_data.get('projects', []))}
- Publications: {len(profile_data.get('publications', []))}
- Recommendations: {len(profile_data.get('recommendations', []))}
"""
# Load profile image
profile_image = self.load_profile_image(profile_data.get('profile_image_hq') or profile_data.get('profile_image'))
# Step 2: Analyze profile automatically
try:
analysis = self.orchestrator.analyzer.analyze_profile(
self.current_profile_data,
job_description
)
self.current_analysis = analysis
# Format analysis results
analysis_text = f"""
## π Analysis Results
**Overall Rating:** {analysis.get('overall_rating', 'Unknown')}
**Completeness Score:** {analysis.get('completeness_score', 0):.1f}%
**Job Match Score:** {analysis.get('job_match_score', 0):.1f}%
### π Strengths
"""
for strength in analysis.get('strengths', []):
analysis_text += f"- {strength}\n"
analysis_text += "\n### β οΈ Areas for Improvement\n"
for weakness in analysis.get('weaknesses', []):
analysis_text += f"- {weakness}\n"
# Keyword analysis
keyword_analysis = analysis.get('keyword_analysis', {})
keywords_text = ""
if keyword_analysis:
found_keywords = keyword_analysis.get('found_keywords', [])
missing_keywords = keyword_analysis.get('missing_keywords', [])
keywords_text = f"""
## π Keyword Analysis
**Found Keywords:** {', '.join(found_keywords[:10])}
{"..." if len(found_keywords) > 10 else ""}
**Missing Keywords:** {', '.join(missing_keywords[:5])}
{"..." if len(missing_keywords) > 5 else ""}
"""
except Exception as e:
analysis_text = f"β οΈ Analysis failed: {str(e)}"
keywords_text = ""
# Step 3: Generate suggestions automatically
try:
suggestions = self.orchestrator.content_generator.generate_suggestions(
self.current_analysis,
job_description
)
self.current_suggestions = suggestions
suggestions_text = ""
for category, items in suggestions.items():
if category == 'ai_generated_content':
ai_content = items if isinstance(items, dict) else {}
# AI Headlines
if 'ai_headlines' in ai_content and ai_content['ai_headlines']:
suggestions_text += "## β¨ Professional Headlines\n\n"
for i, headline in enumerate(ai_content['ai_headlines'], 1):
cleaned_headline = headline.strip('"').replace('\\"', '"')
if cleaned_headline.startswith(('1.', '2.', '3.', '4.', '5.')):
cleaned_headline = cleaned_headline[2:].strip()
suggestions_text += f"{i}. {cleaned_headline}\n\n"
# AI About Section
if 'ai_about_section' in ai_content and ai_content['ai_about_section']:
suggestions_text += "## π Enhanced About Section\n\n"
suggestions_text += f"```\n{ai_content['ai_about_section']}\n```\n\n"
# AI Experience Descriptions
if 'ai_experience_descriptions' in ai_content and ai_content['ai_experience_descriptions']:
suggestions_text += "## πΌ Experience Description Ideas\n\n"
for desc in ai_content['ai_experience_descriptions']:
suggestions_text += f"- {desc}\n"
suggestions_text += "\n"
else:
# Standard categories
category_name = category.replace('_', ' ').title()
suggestions_text += f"## π {category_name}\n\n"
if isinstance(items, list):
for item in items:
suggestions_text += f"- {item}\n"
else:
suggestions_text += f"- {items}\n"
suggestions_text += "\n"
except Exception as e:
suggestions_text = f"β οΈ Suggestions generation failed: {str(e)}"
return "β
Profile Enhanced Successfully", basic_info, about_section, experience_text, details_text, analysis_text, keywords_text, suggestions_text, profile_image
except Exception as e:
return "β Error", f"Failed to enhance profile: {str(e)}", "", "", "", "", "", "", None
def analyze_profile(self, job_description: str = "") -> Tuple[str, str, str]:
"""Analyze the extracted profile data"""
if not self.current_profile_data:
return "β Error", "Please extract profile data first", ""
try:
# Analyze profile
analysis = self.orchestrator.analyzer.analyze_profile(
self.current_profile_data,
job_description
)
self.current_analysis = analysis
# Format analysis results
analysis_text = f"""
## π Analysis Results
**Overall Rating:** {analysis.get('overall_rating', 'Unknown')}
**Completeness Score:** {analysis.get('completeness_score', 0):.1f}%
**Job Match Score:** {analysis.get('job_match_score', 0):.1f}%
### π Strengths
"""
for strength in analysis.get('strengths', []):
analysis_text += f"- {strength}\n"
analysis_text += "\n### οΏ½ Areas for Improvement\n"
for weakness in analysis.get('weaknesses', []):
analysis_text += f"- {weakness}\n"
# Keyword analysis
keyword_analysis = analysis.get('keyword_analysis', {})
keywords_text = ""
if keyword_analysis:
found_keywords = keyword_analysis.get('found_keywords', [])
missing_keywords = keyword_analysis.get('missing_keywords', [])
keywords_text = f"""
## π Keyword Analysis
**Found Keywords:** {', '.join(found_keywords[:10])}
{"..." if len(found_keywords) > 10 else ""}
**Missing Keywords:** {', '.join(missing_keywords[:5])}
{"..." if len(missing_keywords) > 5 else ""}
"""
return "β
Success", analysis_text, keywords_text
except Exception as e:
return "β Error", f"Failed to analyze profile: {str(e)}", ""
def generate_suggestions(self, job_description: str = "") -> Tuple[str, str]:
"""Generate enhancement suggestions"""
if not self.current_analysis:
return "β Error", "Please analyze profile first"
try:
# Generate suggestions
suggestions = self.orchestrator.content_generator.generate_suggestions(
self.current_analysis,
job_description
)
self.current_suggestions = suggestions
suggestions_text = ""
ai_content_text = ""
for category, items in suggestions.items():
if category == 'ai_generated_content':
ai_content = items if isinstance(items, dict) else {}
# AI Headlines
if 'ai_headlines' in ai_content and ai_content['ai_headlines']:
ai_content_text += "## β¨ Professional Headlines\n\n"
for i, headline in enumerate(ai_content['ai_headlines'], 1):
cleaned_headline = headline.strip('"').replace('\\"', '"')
if cleaned_headline.startswith(('1.', '2.', '3.', '4.', '5.')):
cleaned_headline = cleaned_headline[2:].strip()
ai_content_text += f"{i}. {cleaned_headline}\n\n"
# AI About Section
if 'ai_about_section' in ai_content and ai_content['ai_about_section']:
ai_content_text += "## οΏ½ Enhanced About Section\n\n"
ai_content_text += f"```\n{ai_content['ai_about_section']}\n```\n\n"
# AI Experience Descriptions
if 'ai_experience_descriptions' in ai_content and ai_content['ai_experience_descriptions']:
ai_content_text += "## πΌ Experience Description Ideas\n\n"
for desc in ai_content['ai_experience_descriptions']:
ai_content_text += f"- {desc}\n"
ai_content_text += "\n"
else:
# Standard categories
category_name = category.replace('_', ' ').title()
suggestions_text += f"## π {category_name}\n\n"
if isinstance(items, list):
for item in items:
suggestions_text += f"- {item}\n"
else:
suggestions_text += f"- {items}\n"
suggestions_text += "\n"
return "β
Success", suggestions_text + ai_content_text
except Exception as e:
return "β Error", f"Failed to generate suggestions: {str(e)}"
def export_results(self, linkedin_url: str) -> str:
"""Export all results to a comprehensive downloadable file"""
if not self.current_profile_data:
return "β No data to export"
try:
# Create filename with timestamp
profile_name = linkedin_url.split('/in/')[-1].split('/')[0] if linkedin_url else 'profile'
timestamp = time.strftime('%Y%m%d_%H%M%S')
filename = f"LinkedIn_Profile_Enhancement_{profile_name}_{timestamp}.md"
# Compile comprehensive report
content = f"""# π LinkedIn Profile Enhancement Report
**Generated:** {time.strftime('%B %d, %Y at %I:%M %p')}
**Profile URL:** [{linkedin_url}]({linkedin_url})
**Enhancement Date:** {time.strftime('%Y-%m-%d')}
---
## π Executive Summary
This comprehensive report provides a detailed analysis of your LinkedIn profile along with AI-powered enhancement suggestions to improve your professional visibility and job match potential.
---
## π€ Basic Profile Information
| Field | Current Value |
|-------|---------------|
| **Name** | {self.current_profile_data.get('name', 'N/A')} |
| **Professional Headline** | {self.current_profile_data.get('headline', 'N/A')} |
| **Location** | {self.current_profile_data.get('location', 'N/A')} |
| **Connections** | {self.current_profile_data.get('connections', 'N/A')} |
| **Followers** | {self.current_profile_data.get('followers', 'N/A')} |
| **Email** | {self.current_profile_data.get('email', 'N/A')} |
| **Current Position** | {self.current_profile_data.get('job_title', 'N/A')} at {self.current_profile_data.get('company_name', 'N/A')} |
---
## π Current About Section
```
{self.current_profile_data.get('about', 'No about section available')}
```
---
## πΌ Professional Experience
"""
# Add experience details
for i, exp in enumerate(self.current_profile_data.get('experience', []), 1):
content += f"""
### {i}. {exp.get('title', 'Position')}
**Company:** {exp.get('company', 'N/A')}
**Duration:** {exp.get('duration', 'N/A')}
**Location:** {exp.get('location', 'N/A')}
**Current Role:** {'Yes' if exp.get('is_current') else 'No'}
"""
if exp.get('description'):
content += f"**Description:**\n```\n{exp.get('description')}\n```\n\n"
# Add education
content += "---\n\n## π Education\n\n"
for i, edu in enumerate(self.current_profile_data.get('education', []), 1):
content += f"""
### {i}. {edu.get('school', 'School')}
- **Degree:** {edu.get('degree', 'N/A')}
- **Field of Study:** {edu.get('field', 'N/A')}
- **Year:** {edu.get('year', 'N/A')}
- **Grade:** {edu.get('grade', 'N/A')}
"""
# Add skills
skills = self.current_profile_data.get('skills', [])
content += f"""---
## π οΈ Skills & Expertise
**Total Skills Listed:** {len(skills)}
"""
if skills:
# Group skills for better readability
skills_per_line = 5
for i in range(0, len(skills), skills_per_line):
skill_group = skills[i:i+skills_per_line]
content += f"- {' β’ '.join(skill_group)}\n"
# Add certifications and additional data
content += f"""
---
## π Additional Profile Data
| Category | Count |
|----------|-------|
| **Certifications** | {len(self.current_profile_data.get('certifications', []))} |
| **Projects** | {len(self.current_profile_data.get('projects', []))} |
| **Publications** | {len(self.current_profile_data.get('publications', []))} |
| **Recommendations** | {len(self.current_profile_data.get('recommendations', []))} |
"""
# Add analysis results if available
if self.current_analysis:
content += f"""---
## π AI Analysis Results
### Overall Assessment
- **Overall Rating:** {self.current_analysis.get('overall_rating', 'Unknown')}
- **Profile Completeness:** {self.current_analysis.get('completeness_score', 0):.1f}%
- **Job Match Score:** {self.current_analysis.get('job_match_score', 0):.1f}%
### π Identified Strengths
"""
for strength in self.current_analysis.get('strengths', []):
content += f"- {strength}\n"
content += "\n### β οΈ Areas for Improvement\n"
for weakness in self.current_analysis.get('weaknesses', []):
content += f"- {weakness}\n"
# Add keyword analysis
keyword_analysis = self.current_analysis.get('keyword_analysis', {})
if keyword_analysis:
found_keywords = keyword_analysis.get('found_keywords', [])
missing_keywords = keyword_analysis.get('missing_keywords', [])
content += f"""
### π Keyword Analysis
**Found Keywords ({len(found_keywords)}):** {', '.join(found_keywords[:15])}
{"..." if len(found_keywords) > 15 else ""}
**Missing Keywords ({len(missing_keywords)}):** {', '.join(missing_keywords[:10])}
{"..." if len(missing_keywords) > 10 else ""}
"""
# Add enhancement suggestions if available
if self.current_suggestions:
content += "\n---\n\n## π‘ AI-Powered Enhancement Suggestions\n\n"
for category, items in self.current_suggestions.items():
if category == 'ai_generated_content':
ai_content = items if isinstance(items, dict) else {}
# AI Headlines
if 'ai_headlines' in ai_content and ai_content['ai_headlines']:
content += "### β¨ Professional Headlines (Choose Your Favorite)\n\n"
for i, headline in enumerate(ai_content['ai_headlines'], 1):
cleaned_headline = headline.strip('"').replace('\\"', '"')
if cleaned_headline.startswith(('1.', '2.', '3.', '4.', '5.')):
cleaned_headline = cleaned_headline[2:].strip()
content += f"{i}. {cleaned_headline}\n\n"
# AI About Section
if 'ai_about_section' in ai_content and ai_content['ai_about_section']:
content += "### π Enhanced About Section\n\n"
content += f"```\n{ai_content['ai_about_section']}\n```\n\n"
# AI Experience Descriptions
if 'ai_experience_descriptions' in ai_content and ai_content['ai_experience_descriptions']:
content += "### πΌ Experience Description Enhancements\n\n"
for j, desc in enumerate(ai_content['ai_experience_descriptions'], 1):
content += f"{j}. {desc}\n\n"
else:
# Standard categories
category_name = category.replace('_', ' ').title()
content += f"### π {category_name}\n\n"
if isinstance(items, list):
for item in items:
content += f"- {item}\n"
else:
content += f"- {items}\n"
content += "\n"
# Add action items and next steps
content += """---
## π― Recommended Action Items
### Immediate Actions (This Week)
1. **Update Headline:** Choose one of the AI-generated headlines that best reflects your goals
2. **Enhance About Section:** Implement the suggested about section improvements
3. **Add Missing Keywords:** Incorporate relevant missing keywords naturally into your content
4. **Complete Profile Sections:** Fill in any incomplete sections identified in the analysis
### Medium-term Goals (This Month)
1. **Experience Descriptions:** Update job descriptions using the AI-generated suggestions
2. **Skills Optimization:** Add relevant skills identified in the keyword analysis
3. **Network Growth:** Aim to increase connections in your industry
4. **Content Strategy:** Start sharing relevant professional content
### Long-term Strategy (Next 3 Months)
1. **Regular Updates:** Keep your profile current with new achievements and skills
2. **Engagement:** Actively engage with your network's content
3. **Personal Branding:** Develop a consistent professional brand across all sections
4. **Performance Monitoring:** Track profile views and connection requests
---
## π Additional Resources
- **LinkedIn Profile Optimization Guide:** [LinkedIn Help Center](https://www.linkedin.com/help/linkedin)
- **Professional Photography:** Consider professional headshots for profile picture
- **Skill Assessments:** Take LinkedIn skill assessments to verify your expertise
- **Industry Groups:** Join relevant professional groups in your field
*This is an automated analysis. Results may vary based on individual goals and industry standards.*
"""
# Save to file (this will be downloaded by the browser)
with open(filename, 'w', encoding='utf-8') as f:
f.write(content)
return f"β
Report exported as {filename} - File saved for download"
except Exception as e:
return f"β Export failed: {str(e)}"
def create_gradio_interface():
"""Create and return the Gradio interface"""
app = LinkedInEnhancerGradio()
# Custom CSS for beautiful styling
custom_css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
max-width: 1200px;
margin: 0 auto;
}
.header-text {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 2rem;
border-radius: 10px;
margin-bottom: 2rem;
}
.status-box {
padding: 1rem;
border-radius: 8px;
margin: 0.5rem 0;
}
.success {
background-color: #d4edda;
border: 1px solid #c3e6cb;
color: #155724;
}
.error {
background-color: #f8d7da;
border: 1px solid #f5c6cb;
color: #721c24;
}
.info {
background-color: #e7f3ff;
border: 1px solid #b3d7ff;
color: #0c5460;
}
"""
with gr.Blocks(css=custom_css, title="π LinkedIn Profile Enhancer", theme=gr.themes.Soft()) as demo:
# Header
gr.HTML("""
<div class="header-text">
<h1>π LinkedIn Profile Enhancer</h1>
<p style="font-size: 1.2em; margin: 1rem 0;">AI-powered LinkedIn profile analysis and enhancement suggestions</p>
<div style="display: flex; justify-content: center; gap: 2rem; margin-top: 1rem;">
<div style="text-align: center;">
<div style="font-size: 2em;">π</div>
<div>Real Scraping</div>
</div>
<div style="text-align: center;">
<div style="font-size: 2em;">π€</div>
<div>AI Analysis</div>
</div>
<div style="text-align: center;">
<div style="font-size: 2em;">π―</div>
<div>Smart Suggestions</div>
</div>
<div style="text-align: center;">
<div style="font-size: 2em;">π</div>
<div>Rich Data</div>
</div>
</div>
</div>
""")
# API Status Section
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## π API Status")
with gr.Row():
apify_status = gr.Textbox(label="π‘ Apify API", interactive=False, value="Testing...")
openai_status = gr.Textbox(label="π€ OpenAI API", interactive=False, value="Testing...")
test_btn = gr.Button("π Test Connections", variant="secondary")
# Main Input Section
with gr.Row():
with gr.Column(scale=2):
linkedin_url = gr.Textbox(
label="π LinkedIn Profile URL",
placeholder="https://www.linkedin.com/in/your-profile",
lines=1
)
job_description = gr.Textbox(
label="π― Target Job Description (Optional)",
placeholder="Paste the job description here for tailored suggestions...",
lines=5
)
with gr.Column(scale=1):
profile_image = gr.Image(
label="πΈ Profile Picture",
height=200,
width=200
)
# Action Buttons - Single Enhanced Button
with gr.Row():
enhance_btn = gr.Button("οΏ½ Enhance LinkedIn Profile", variant="primary", size="lg")
export_btn = gr.Button("π Export Results", variant="secondary")
# Results Section with Tabs
with gr.Tabs():
with gr.TabItem("π Basic Information"):
enhance_status = gr.Textbox(label="Status", interactive=False)
basic_info = gr.Markdown(label="Basic Information")
with gr.TabItem("π About Section"):
about_section = gr.Markdown(label="About Section")
with gr.TabItem("πΌ Experience"):
experience_info = gr.Markdown(label="Work Experience")
with gr.TabItem("π Education & Skills"):
education_skills = gr.Markdown(label="Education & Skills")
with gr.TabItem("π Analysis Results"):
analysis_results = gr.Markdown(label="Analysis Results")
keyword_analysis = gr.Markdown(label="Keyword Analysis")
with gr.TabItem("π‘ Enhancement Suggestions"):
suggestions_content = gr.Markdown(label="Enhancement Suggestions")
with gr.TabItem("π Export & Download"):
export_status = gr.Textbox(label="Download Status", interactive=False)
gr.Markdown("""
### π Comprehensive Report Download
Click the **Export Results** button to download a complete markdown report containing:
#### π **Complete Profile Analysis**
- Basic profile information and current content
- Detailed experience and education sections
- Skills analysis and completeness scoring
#### π€ **AI Enhancement Suggestions**
- Professional headline options
- Enhanced about section recommendations
- Experience description improvements
- Keyword optimization suggestions
#### π― **Action Plan**
- Immediate action items (this week)
- Medium-term goals (this month)
- Long-term strategy (next 3 months)
- Additional resources and tips
**File Format:** Markdown (.md) - Compatible with GitHub, Notion, and most text editors
""")
# Event Handlers
def on_test_connections():
apify, openai = app.test_api_connections()
return apify, openai
def on_enhance_profile(url, job_desc):
status, basic, about, exp, details, analysis, keywords, suggestions, image = app.enhance_linkedin_profile(url, job_desc)
return status, basic, about, exp, details, analysis, keywords, suggestions, image
def on_export_results(url):
return app.export_results(url)
# Connect events
test_btn.click(
fn=on_test_connections,
outputs=[apify_status, openai_status]
)
enhance_btn.click(
fn=on_enhance_profile,
inputs=[linkedin_url, job_description],
outputs=[enhance_status, basic_info, about_section, experience_info, education_skills, analysis_results, keyword_analysis, suggestions_content, profile_image]
)
export_btn.click(
fn=on_export_results,
inputs=[linkedin_url],
outputs=[export_status]
)
# Auto-test connections on load
demo.load(
fn=on_test_connections,
outputs=[apify_status, openai_status]
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 2rem; padding: 1rem; border-top: 1px solid #eee;">
<p>π <strong>LinkedIn Profile Enhancer</strong> | Powered by AI | Built with β€οΈ using Gradio</p>
<p>Data scraped with respect to LinkedIn's ToS | Uses OpenAI GPT-4o-mini and Apify</p>
</div>
""")
return demo
def main():
"""Main function"""
# Check if running with command line arguments (for backward compatibility)
if len(sys.argv) > 1:
if sys.argv[1] == '--help':
print("""
LinkedIn Profile Enhancer - Gradio Interface
Usage:
python app2.py # Launch Gradio web interface
python app2.py --help # Show this help
Web Interface Features:
- Beautiful modern UI
- Real-time profile extraction
- AI-powered analysis
- Enhancement suggestions
- Export functionality
- Profile image display
""")
return
else:
print("β Unknown argument. Use --help for usage information.")
return
# Launch Gradio interface
print("π Starting LinkedIn Profile Enhancer...")
print("π± Launching Gradio interface...")
demo = create_gradio_interface()
demo.launch(
server_name="localhost",
server_port=7860,
share=True, # Creates a public link
show_error=True
)
if __name__ == "__main__":
main()
|