File size: 13,610 Bytes
5e5e890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# Job Matching Logic
from typing import Dict, Any, List, Tuple
import re
from collections import Counter
class JobMatcher:
"""Utility class for matching LinkedIn profiles with job descriptions"""
def __init__(self):
self.weight_config = {
'skills': 0.4,
'experience': 0.3,
'keywords': 0.2,
'education': 0.1
}
self.skill_synonyms = {
'javascript': ['js', 'ecmascript', 'node.js', 'nodejs'],
'python': ['py', 'django', 'flask', 'fastapi'],
'react': ['reactjs', 'react.js'],
'angular': ['angularjs', 'angular.js'],
'machine learning': ['ml', 'ai', 'artificial intelligence'],
'database': ['db', 'sql', 'mysql', 'postgresql', 'mongodb']
}
def calculate_match_score(self, profile_data: Dict[str, Any], job_description: str) -> Dict[str, Any]:
"""
Calculate comprehensive match score between profile and job
Args:
profile_data (Dict[str, Any]): Cleaned profile data
job_description (str): Job description text
Returns:
Dict[str, Any]: Match analysis with scores and details
"""
job_requirements = self._parse_job_requirements(job_description)
# Calculate individual scores
skills_score = self._calculate_skills_match(
profile_data.get('skills', []),
job_requirements['skills']
)
experience_score = self._calculate_experience_match(
profile_data.get('experience', []),
job_requirements
)
keywords_score = self._calculate_keywords_match(
profile_data,
job_requirements['keywords']
)
education_score = self._calculate_education_match(
profile_data.get('education', []),
job_requirements
)
# Calculate weighted overall score
overall_score = (
skills_score['score'] * self.weight_config['skills'] +
experience_score['score'] * self.weight_config['experience'] +
keywords_score['score'] * self.weight_config['keywords'] +
education_score['score'] * self.weight_config['education']
)
return {
'overall_score': round(overall_score, 2),
'breakdown': {
'skills': skills_score,
'experience': experience_score,
'keywords': keywords_score,
'education': education_score
},
'recommendations': self._generate_match_recommendations(
skills_score, experience_score, keywords_score, education_score
),
'job_requirements': job_requirements
}
def find_skill_gaps(self, profile_skills: List[str], job_requirements: List[str]) -> Dict[str, List[str]]:
"""
Identify skill gaps between profile and job requirements
Args:
profile_skills (List[str]): Current profile skills
job_requirements (List[str]): Required job skills
Returns:
Dict[str, List[str]]: Missing and matching skills
"""
profile_skills_lower = [skill.lower() for skill in profile_skills]
job_skills_lower = [skill.lower() for skill in job_requirements]
# Find exact matches
matching_skills = []
missing_skills = []
for job_skill in job_skills_lower:
if job_skill in profile_skills_lower:
matching_skills.append(job_skill)
else:
# Check for synonyms
found_synonym = False
for profile_skill in profile_skills_lower:
if self._are_skills_similar(profile_skill, job_skill):
matching_skills.append(job_skill)
found_synonym = True
break
if not found_synonym:
missing_skills.append(job_skill)
return {
'matching_skills': matching_skills,
'missing_skills': missing_skills,
'match_percentage': len(matching_skills) / max(len(job_skills_lower), 1) * 100
}
def suggest_profile_improvements(self, match_analysis: Dict[str, Any]) -> List[str]:
"""
Generate specific improvement suggestions based on match analysis
Args:
match_analysis (Dict[str, Any]): Match analysis results
Returns:
List[str]: Improvement suggestions
"""
suggestions = []
breakdown = match_analysis['breakdown']
# Skills suggestions
if breakdown['skills']['score'] < 70:
missing_skills = breakdown['skills']['details']['missing_skills'][:3]
if missing_skills:
suggestions.append(
f"Add these high-priority skills: {', '.join(missing_skills)}"
)
# Experience suggestions
if breakdown['experience']['score'] < 60:
suggestions.append(
"Highlight more relevant experience in your current/previous roles"
)
suggestions.append(
"Add quantified achievements that demonstrate impact"
)
# Keywords suggestions
if breakdown['keywords']['score'] < 50:
suggestions.append(
"Incorporate more industry-specific keywords throughout your profile"
)
# Education suggestions
if breakdown['education']['score'] < 40:
suggestions.append(
"Consider adding relevant certifications or courses"
)
return suggestions
def _parse_job_requirements(self, job_description: str) -> Dict[str, Any]:
"""Parse job description to extract requirements"""
requirements = {
'skills': [],
'keywords': [],
'experience_years': 0,
'education_level': '',
'industry': '',
'role_type': ''
}
# Extract skills (common technical skills)
skill_patterns = [
r'\b(python|javascript|java|react|angular|node\.?js|sql|aws|docker|kubernetes)\b',
r'\b(machine learning|ai|data science|devops|full.?stack)\b',
r'\b(project management|agile|scrum|leadership)\b'
]
for pattern in skill_patterns:
matches = re.findall(pattern, job_description, re.IGNORECASE)
requirements['skills'].extend([match.lower() for match in matches])
# Extract experience years
exp_pattern = r'(\d+)\+?\s*years?\s*(?:of\s*)?experience'
exp_matches = re.findall(exp_pattern, job_description, re.IGNORECASE)
if exp_matches:
requirements['experience_years'] = int(exp_matches[0])
# Extract keywords (all meaningful words)
keywords = re.findall(r'\b[a-zA-Z]{3,}\b', job_description)
stop_words = {'the', 'and', 'for', 'with', 'you', 'will', 'are', 'have'}
requirements['keywords'] = [
word.lower() for word in keywords
if word.lower() not in stop_words
]
# Remove duplicates
requirements['skills'] = list(set(requirements['skills']))
requirements['keywords'] = list(set(requirements['keywords']))
return requirements
def _calculate_skills_match(self, profile_skills: List[str], job_skills: List[str]) -> Dict[str, Any]:
"""Calculate skills match score"""
if not job_skills:
return {'score': 100, 'details': {'matching_skills': [], 'missing_skills': []}}
skill_gap_analysis = self.find_skill_gaps(profile_skills, job_skills)
return {
'score': skill_gap_analysis['match_percentage'],
'details': skill_gap_analysis
}
def _calculate_experience_match(self, profile_experience: List[Dict], job_requirements: Dict) -> Dict[str, Any]:
"""Calculate experience match score"""
score = 0
details = {
'relevant_roles': 0,
'total_experience': 0,
'required_experience': job_requirements.get('experience_years', 0)
}
# Calculate total years of experience
total_years = 0
relevant_roles = 0
for exp in profile_experience:
duration_info = exp.get('duration_info', {})
if duration_info.get('duration_months'):
total_years += duration_info['duration_months'] / 12
# Check if role is relevant (simple keyword matching)
role_text = f"{exp.get('title', '')} {exp.get('description', '')}".lower()
job_keywords = job_requirements.get('keywords', [])
if any(keyword in role_text for keyword in job_keywords[:10]):
relevant_roles += 1
details['total_experience'] = round(total_years, 1)
details['relevant_roles'] = relevant_roles
# Calculate score based on experience and relevance
if job_requirements.get('experience_years', 0) > 0:
exp_ratio = min(total_years / job_requirements['experience_years'], 1.0)
score = exp_ratio * 70 + (relevant_roles / max(len(profile_experience), 1)) * 30
else:
score = 80 # Default good score if no specific experience required
return {
'score': round(score, 2),
'details': details
}
def _calculate_keywords_match(self, profile_data: Dict, job_keywords: List[str]) -> Dict[str, Any]:
"""Calculate keywords match score"""
if not job_keywords:
return {'score': 100, 'details': {'matched': 0, 'total': 0}}
# Extract all text from profile
profile_text = ""
for key, value in profile_data.items():
if isinstance(value, str):
profile_text += f" {value}"
elif isinstance(value, list):
for item in value:
if isinstance(item, dict):
profile_text += f" {' '.join(str(v) for v in item.values())}"
else:
profile_text += f" {item}"
profile_text = profile_text.lower()
# Count keyword matches
matched_keywords = 0
for keyword in job_keywords:
if keyword.lower() in profile_text:
matched_keywords += 1
score = (matched_keywords / len(job_keywords)) * 100
return {
'score': round(score, 2),
'details': {
'matched': matched_keywords,
'total': len(job_keywords),
'percentage': round(score, 2)
}
}
def _calculate_education_match(self, profile_education: List[Dict], job_requirements: Dict) -> Dict[str, Any]:
"""Calculate education match score"""
score = 70 # Default score
details = {
'has_degree': len(profile_education) > 0,
'degree_count': len(profile_education)
}
if profile_education:
score = 85 # Boost for having education
# Check for relevant fields
job_keywords = job_requirements.get('keywords', [])
for edu in profile_education:
edu_text = f"{edu.get('degree', '')} {edu.get('field', '')}".lower()
if any(keyword in edu_text for keyword in job_keywords[:5]):
score = 95
break
return {
'score': score,
'details': details
}
def _are_skills_similar(self, skill1: str, skill2: str) -> bool:
"""Check if two skills are similar using synonyms"""
skill1_lower = skill1.lower()
skill2_lower = skill2.lower()
# Check direct synonyms
for main_skill, synonyms in self.skill_synonyms.items():
if ((skill1_lower == main_skill or skill1_lower in synonyms) and
(skill2_lower == main_skill or skill2_lower in synonyms)):
return True
# Check partial matches
if skill1_lower in skill2_lower or skill2_lower in skill1_lower:
return True
return False
def _generate_match_recommendations(self, skills_score: Dict, experience_score: Dict,
keywords_score: Dict, education_score: Dict) -> List[str]:
"""Generate recommendations based on individual scores"""
recommendations = []
if skills_score['score'] < 60:
recommendations.append("Focus on developing missing technical skills")
if experience_score['score'] < 50:
recommendations.append("Highlight more relevant work experience")
if keywords_score['score'] < 40:
recommendations.append("Optimize profile with job-specific keywords")
if education_score['score'] < 60:
recommendations.append("Consider additional certifications or training")
return recommendations
|