Akshayram1 commited on
Commit
8403f6b
Β·
verified Β·
1 Parent(s): 5e5e890

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -232
README.md CHANGED
@@ -1,234 +1,12 @@
1
- # LinkedIn Profile Enhancer
2
-
3
- An AI-powered tool that analyzes LinkedIn profiles and provides personalized enhancement suggestions to improve professional visibility and job matching.
4
-
5
- ## Features
6
-
7
- - πŸ” **Profile Analysis**: Comprehensive analysis of LinkedIn profile completeness and quality
8
- - 🎯 **Job Matching**: Smart matching against job descriptions with skill gap analysis
9
- - ✍️ **Content Generation**: AI-powered suggestions for headlines, about sections, and experience descriptions
10
- - πŸ’Ύ **Memory Management**: Session and persistent storage for tracking improvements over time
11
- - 🌐 **Web Interface**: User-friendly Gradio interface for easy interaction
12
-
13
- ## Project Structure
14
-
15
- ```
16
- linkedin_enhancer/
17
- β”œβ”€β”€ app.py # Main Gradio application
18
- β”œβ”€β”€ agents/
19
- β”‚ β”œβ”€β”€ __init__.py
20
- β”‚ β”œβ”€β”€ orchestrator.py # Main agent coordinator
21
- β”‚ β”œβ”€β”€ scraper_agent.py # LinkedIn data extraction
22
- β”‚ β”œβ”€β”€ analyzer_agent.py # Profile analysis
23
- β”‚ └── content_agent.py # Content generation
24
- β”œβ”€β”€ memory/
25
- β”‚ β”œβ”€β”€ __init__.py
26
- β”‚ └── memory_manager.py # Session & persistent memory
27
- β”œβ”€β”€ utils/
28
- β”‚ β”œβ”€β”€ __init__.py
29
- β”‚ β”œβ”€β”€ linkedin_parser.py # Parse scraped data
30
- β”‚ └── job_matcher.py # Job matching logic
31
- β”œβ”€β”€ prompts/
32
- β”‚ └── agent_prompts.py # All agent prompts
33
- β”œβ”€β”€ requirements.txt
34
- └── README.md
35
- ```
36
-
37
- ## Installation
38
-
39
- 1. Clone the repository:
40
- ```bash
41
- git clone <repository-url>
42
- cd linkedin_enhancer
43
- ```
44
-
45
- 2. Create a virtual environment:
46
- ```bash
47
- python -m venv venv
48
- source venv/bin/activate # On Windows: venv\Scripts\activate
49
- ```
50
-
51
- 3. Install dependencies:
52
- ```bash
53
- pip install -r requirements.txt
54
- ```
55
-
56
- 4. Set up environment variables:
57
- ```bash
58
- # Create .env file with your API keys
59
- OPENAI_API_KEY=your_openai_key_here
60
- APIFY_API_TOKEN=your_apify_token_here
61
- ```
62
-
63
- ## API Keys Setup
64
-
65
- ### Required Services:
66
-
67
- 1. **OpenAI API** (for AI content generation):
68
- - Sign up at [OpenAI Platform](https://platform.openai.com/)
69
- - Create an API key in your dashboard
70
- - Add to `.env` file: `OPENAI_API_KEY=sk-...`
71
-
72
- 2. **Apify API** (for LinkedIn scraping):
73
- - Sign up at [Apify](https://apify.com/)
74
- - Rent the "curious_coder/linkedin-profile-scraper" actor
75
- - Get your API token from account settings
76
- - Add to `.env` file: `APIFY_API_TOKEN=apify_api_...`
77
-
78
- ## Usage
79
-
80
- ### Running the Application
81
-
82
- Start the Gradio interface:
83
- ```bash
84
- python app.py
85
- ```
86
-
87
- The application will launch a web interface where you can:
88
- 1. Input a LinkedIn profile URL
89
- 2. Optionally provide a job description for tailored suggestions
90
- 3. Get comprehensive analysis and enhancement recommendations
91
-
92
- ### Core Components
93
-
94
- #### 1. Profile Orchestrator (`agents/orchestrator.py`)
95
- The main coordinator that manages the entire enhancement workflow:
96
- - Coordinates between scraper, analyzer, and content generation agents
97
- - Manages data flow and session storage
98
- - Formats final output for user presentation
99
-
100
- #### 2. Scraper Agent (`agents/scraper_agent.py`)
101
- Handles LinkedIn profile data extraction using Apify:
102
- - **Real LinkedIn Scraping**: Uses Apify's `curious_coder/linkedin-profile-scraper`
103
- - **Comprehensive Data**: Extracts experience, education, skills, connections, etc.
104
- - **Fallback Support**: Uses mock data if scraping fails
105
- - **Rate Limiting**: Built-in delays to respect LinkedIn's terms
106
-
107
- #### 3. Analyzer Agent (`agents/analyzer_agent.py`)
108
- Performs comprehensive profile analysis:
109
- - Calculates profile completeness score
110
- - Analyzes keyword optimization
111
- - Identifies strengths and weaknesses
112
- - Assesses content quality
113
- - Provides job matching scores
114
-
115
- #### 4. Content Agent (`agents/content_agent.py`)
116
- Generates enhancement suggestions using AI:
117
- - **AI-Powered Content**: Uses OpenAI GPT models for content generation
118
- - **Smart Headlines**: AI-generated LinkedIn headline suggestions
119
- - **About Section**: AI-crafted professional summaries
120
- - **Experience Optimization**: Enhanced job descriptions with metrics
121
- - **Fallback Logic**: Traditional rule-based suggestions if AI unavailable
122
-
123
- #### 5. Memory Manager (`memory/memory_manager.py`)
124
- Handles data persistence:
125
- - Session data storage
126
- - User preferences
127
- - Analysis history tracking
128
- - Data export functionality
129
-
130
- #### 6. Utility Classes
131
- - **LinkedIn Parser** (`utils/linkedin_parser.py`): Cleans and standardizes profile data
132
- - **Job Matcher** (`utils/job_matcher.py`): Calculates job compatibility scores
133
-
134
- ## Key Features
135
-
136
- ### Profile Analysis
137
- - **Completeness Score**: Measures profile completeness (0-100%)
138
- - **Keyword Analysis**: Identifies missing keywords for target roles
139
- - **Content Quality**: Assesses use of action words and quantified achievements
140
- - **Strengths/Weaknesses**: Identifies areas of improvement
141
-
142
- ### Job Matching
143
- - **Skills Gap Analysis**: Compares profile skills with job requirements
144
- - **Match Scoring**: Weighted scoring across skills, experience, keywords, and education
145
- - **Improvement Recommendations**: Specific suggestions to increase match scores
146
-
147
- ### Content Enhancement
148
- - **Smart Suggestions**: Context-aware recommendations for each profile section
149
- - **Template Generation**: Provides templates and examples for better content
150
- - **Keyword Optimization**: Natural integration of relevant keywords
151
-
152
- ## Development
153
-
154
- ### Adding New Features
155
-
156
- 1. **New Analysis Criteria**: Extend `AnalyzerAgent` with additional analysis methods
157
- 2. **Enhanced Scraping**: Improve `ScraperAgent` with better data extraction (requires LinkedIn API setup)
158
- 3. **AI Integration**: Add LLM calls in `ContentAgent` for more sophisticated suggestions
159
- 4. **Additional Matching Logic**: Extend `JobMatcher` with more sophisticated algorithms
160
-
161
- ### Configuration
162
-
163
- The system uses configurable weights for job matching in `utils/job_matcher.py`:
164
- ```python
165
- weight_config = {
166
- 'skills': 0.4,
167
- 'experience': 0.3,
168
- 'keywords': 0.2,
169
- 'education': 0.1
170
- }
171
- ```
172
-
173
- ## Limitations & Considerations
174
-
175
- ### Current Capabilities
176
- - βœ… **Real LinkedIn Scraping**: Uses Apify's professional scraper
177
- - βœ… **AI Content Generation**: OpenAI GPT-powered suggestions
178
- - βœ… **Job Matching**: Advanced compatibility scoring
179
- - βœ… **Memory Management**: Session tracking and persistent storage
180
-
181
- ### Production Ready Features
182
- - **API Integration**: Full OpenAI and Apify integration
183
- - **Error Handling**: Graceful fallbacks and error recovery
184
- - **Rate Limiting**: Respects API limits and LinkedIn terms
185
- - **Data Validation**: Input validation and sanitization
186
-
187
- ### Production Considerations
188
- - **Rate Limiting**: Built-in API rate limiting and respect for service terms
189
- - **Data Privacy**: Secure handling of profile data and API keys
190
- - **Scalability**: Modular architecture supports high-volume usage
191
- - **Monitoring**: API connection testing and error tracking
192
-
193
- ## Testing the Setup
194
-
195
- After setting up your API keys, test the connections:
196
-
197
- ```python
198
- # Test Apify connection
199
- python -c "from agents.scraper_agent import ScraperAgent; ScraperAgent().test_apify_connection()"
200
-
201
- # Test OpenAI connection
202
- python -c "from agents.content_agent import ContentAgent; ContentAgent().test_openai_connection()"
203
- ```
204
-
205
- ## Future Enhancements
206
-
207
- - πŸ“Š **Analytics Dashboard**: Track improvement metrics over time
208
- - πŸ”„ **A/B Testing**: Test different enhancement strategies
209
- - 🌐 **Multi-language Support**: Support for profiles in different languages
210
- - πŸ“± **Mobile App**: React Native or Flutter mobile application
211
- - πŸ”— **LinkedIn Integration**: Direct LinkedIn API partnership for real-time updates
212
- - 🎯 **Industry-specific Templates**: Tailored suggestions for different industries
213
- - πŸ“ˆ **Performance Tracking**: Monitor profile view increases after optimizations
214
-
215
- ## Contributing
216
-
217
- 1. Fork the repository
218
- 2. Create a feature branch
219
- 3. Make your changes
220
- 4. Add tests if applicable
221
- 5. Submit a pull request
222
-
223
- ## License
224
-
225
- This project is licensed under the MIT License - see the LICENSE file for details.
226
-
227
- ## Support
228
-
229
- For questions or support, please open an issue in the repository or contact the development team.
230
-
231
  ---
232
 
233
- **Note**: This tool is for educational and professional development purposes. Always respect LinkedIn's terms of service and data privacy regulations when using profile data.
234
- # linked_profile_enhancer
 
1
+ ---
2
+ title: Linked_in_Enhancer_gradio
3
+ emoji: πŸŒ–
4
+ colorFrom: red
5
+ colorTo: pink
6
+ sdk: gradio
7
+ sdk_version: 5.34.2
8
+ app_file: app.py
9
+ pinned: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference