Spaces:
Sleeping
Sleeping
alesb2010
commited on
Commit
·
01ddf54
1
Parent(s):
8ae5cb0
Update space
Browse files- app.py +55 -54
- requirements.txt +3 -1
app.py
CHANGED
@@ -1,66 +1,67 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
# Load model directly
|
4 |
from transformers import AutoModel
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
def respond(
|
13 |
-
message,
|
14 |
-
history: list[tuple[str, str]],
|
15 |
-
system_message,
|
16 |
-
max_tokens,
|
17 |
-
temperature,
|
18 |
-
top_p,
|
19 |
-
):
|
20 |
-
messages = [{"role": "system", "content": system_message}]
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
for message in client.chat_completion(
|
33 |
-
messages,
|
34 |
-
max_tokens=max_tokens,
|
35 |
-
stream=True,
|
36 |
-
temperature=temperature,
|
37 |
-
top_p=top_p,
|
38 |
-
):
|
39 |
-
token = message.choices[0].delta.content
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
),
|
61 |
-
],
|
62 |
-
)
|
63 |
|
64 |
|
|
|
|
|
65 |
if __name__ == "__main__":
|
66 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
# from transformers import pipeline # Or whatever library your model needs (e.g., torch, tensorflow)
|
|
|
3 |
from transformers import AutoModel
|
4 |
+
import os # Useful for environment variables if needed
|
5 |
|
6 |
+
# 1. Load your Hugging Face model
|
7 |
+
# Replace "your-model-id" with the actual ID of the model on Hugging Face Hub
|
8 |
+
# Using pipeline is often the easiest way to start for common tasks
|
9 |
+
try:
|
10 |
+
# Example: Sentiment Analysis model
|
11 |
+
# model = pipeline("sentiment-analysis", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
|
12 |
+
model = AutoModel.from_pretrained("mradermacher/DeepSeek-R1-Distill-Qwen-7B-Multilingual-i1-GGUF")
|
13 |
+
# Or load specific model/tokenizer if pipeline isn't suitable:
|
14 |
+
# from transformers import AutoModel, AutoTokenizer
|
15 |
+
# tokenizer = AutoTokenizer.from_pretrained("your-model-id")
|
16 |
+
# model = AutoModel.from_pretrained("your-model-id")
|
17 |
+
except Exception as e:
|
18 |
+
# Handle potential errors during model loading (e.g., network issues, model not found)
|
19 |
+
print(f"Error loading model: {e}")
|
20 |
+
model = None # Set model to None if loading fails
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# 2. Define the function that uses the model
|
24 |
+
# This function takes the input from the Gradio interface
|
25 |
+
# and returns the output that Gradio will display.
|
26 |
+
def process_input_with_model(input_text):
|
27 |
+
if model is None:
|
28 |
+
return "Model could not be loaded. Please check logs."
|
29 |
|
30 |
+
# Example using a pipeline:
|
31 |
+
result = model(input_text)
|
32 |
+
return result[0]['label'] # Adjust based on your model's output format
|
33 |
|
34 |
+
# Example if you loaded model/tokenizer manually:
|
35 |
+
# inputs = tokenizer(input_text, return_tensors="pt")
|
36 |
+
# outputs = model(**inputs)
|
37 |
+
# Process outputs to get your desired result...
|
38 |
+
# return processed_result
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# 3. Define the Gradio Interface
|
42 |
+
# Set up the input and output components and link the processing function
|
43 |
+
if model is not None: # Only create the interface if the model loaded successfully
|
44 |
+
interface = gr.Interface(
|
45 |
+
fn=process_input_with_model, # Your function
|
46 |
+
inputs=gr.Textbox(label="Enter text for analysis"), # Input component (adjust type as needed)
|
47 |
+
outputs=gr.Label(), # Output component (adjust type as needed)
|
48 |
+
title="My Hugging Face Model Test App",
|
49 |
+
description="Test out the sentiment analysis model."
|
50 |
+
)
|
51 |
+
else:
|
52 |
+
# Create a simple interface indicating an error if the model failed to load
|
53 |
+
interface = gr.Interface(
|
54 |
+
fn=lambda x: "Application failed to load model.", # Simple function
|
55 |
+
inputs=gr.Textbox(label="Status"),
|
56 |
+
outputs=gr.Textbox(),
|
57 |
+
title="Application Error",
|
58 |
+
description="Failed to load the model. Check the logs for details."
|
59 |
+
)
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
+
# 4. Launch the Gradio App
|
63 |
+
# This is crucial for App Spaces to run your application.
|
64 |
if __name__ == "__main__":
|
65 |
+
# The listen='0.0.0.0' and share=False are often handled by the App Space environment
|
66 |
+
# but including them is harmless. App Spaces expose on port 7860 by default.
|
67 |
+
interface.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|
requirements.txt
CHANGED
@@ -1,2 +1,4 @@
|
|
1 |
huggingface_hub==0.25.2
|
2 |
-
|
|
|
|
|
|
1 |
huggingface_hub==0.25.2
|
2 |
+
gradio
|
3 |
+
transformers==4.12.5
|
4 |
+
torch
|