alesb2010 commited on
Commit
01ddf54
·
1 Parent(s): 8ae5cb0

Update space

Browse files
Files changed (2) hide show
  1. app.py +55 -54
  2. requirements.txt +3 -1
app.py CHANGED
@@ -1,66 +1,67 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
- # Load model directly
4
  from transformers import AutoModel
5
- model = AutoModel.from_pretrained("mradermacher/DeepSeek-R1-Distill-Qwen-7B-Multilingual-i1-GGUF")
6
 
7
- """
8
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
9
- """
10
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- def respond(
13
- message,
14
- history: list[tuple[str, str]],
15
- system_message,
16
- max_tokens,
17
- temperature,
18
- top_p,
19
- ):
20
- messages = [{"role": "system", "content": system_message}]
21
 
22
- for val in history:
23
- if val[0]:
24
- messages.append({"role": "user", "content": val[0]})
25
- if val[1]:
26
- messages.append({"role": "assistant", "content": val[1]})
 
27
 
28
- messages.append({"role": "user", "content": message})
 
 
29
 
30
- response = ""
 
 
 
 
31
 
32
- for message in client.chat_completion(
33
- messages,
34
- max_tokens=max_tokens,
35
- stream=True,
36
- temperature=temperature,
37
- top_p=top_p,
38
- ):
39
- token = message.choices[0].delta.content
40
 
41
- response += token
42
- yield response
43
-
44
-
45
- """
46
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
47
- """
48
- demo = gr.ChatInterface(
49
- respond,
50
- additional_inputs=[
51
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
52
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
53
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
54
- gr.Slider(
55
- minimum=0.1,
56
- maximum=1.0,
57
- value=0.95,
58
- step=0.05,
59
- label="Top-p (nucleus sampling)",
60
- ),
61
- ],
62
- )
63
 
64
 
 
 
65
  if __name__ == "__main__":
66
- demo.launch()
 
 
 
1
  import gradio as gr
2
+ # from transformers import pipeline # Or whatever library your model needs (e.g., torch, tensorflow)
 
3
  from transformers import AutoModel
4
+ import os # Useful for environment variables if needed
5
 
6
+ # 1. Load your Hugging Face model
7
+ # Replace "your-model-id" with the actual ID of the model on Hugging Face Hub
8
+ # Using pipeline is often the easiest way to start for common tasks
9
+ try:
10
+ # Example: Sentiment Analysis model
11
+ # model = pipeline("sentiment-analysis", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
12
+ model = AutoModel.from_pretrained("mradermacher/DeepSeek-R1-Distill-Qwen-7B-Multilingual-i1-GGUF")
13
+ # Or load specific model/tokenizer if pipeline isn't suitable:
14
+ # from transformers import AutoModel, AutoTokenizer
15
+ # tokenizer = AutoTokenizer.from_pretrained("your-model-id")
16
+ # model = AutoModel.from_pretrained("your-model-id")
17
+ except Exception as e:
18
+ # Handle potential errors during model loading (e.g., network issues, model not found)
19
+ print(f"Error loading model: {e}")
20
+ model = None # Set model to None if loading fails
21
 
 
 
 
 
 
 
 
 
 
22
 
23
+ # 2. Define the function that uses the model
24
+ # This function takes the input from the Gradio interface
25
+ # and returns the output that Gradio will display.
26
+ def process_input_with_model(input_text):
27
+ if model is None:
28
+ return "Model could not be loaded. Please check logs."
29
 
30
+ # Example using a pipeline:
31
+ result = model(input_text)
32
+ return result[0]['label'] # Adjust based on your model's output format
33
 
34
+ # Example if you loaded model/tokenizer manually:
35
+ # inputs = tokenizer(input_text, return_tensors="pt")
36
+ # outputs = model(**inputs)
37
+ # Process outputs to get your desired result...
38
+ # return processed_result
39
 
 
 
 
 
 
 
 
 
40
 
41
+ # 3. Define the Gradio Interface
42
+ # Set up the input and output components and link the processing function
43
+ if model is not None: # Only create the interface if the model loaded successfully
44
+ interface = gr.Interface(
45
+ fn=process_input_with_model, # Your function
46
+ inputs=gr.Textbox(label="Enter text for analysis"), # Input component (adjust type as needed)
47
+ outputs=gr.Label(), # Output component (adjust type as needed)
48
+ title="My Hugging Face Model Test App",
49
+ description="Test out the sentiment analysis model."
50
+ )
51
+ else:
52
+ # Create a simple interface indicating an error if the model failed to load
53
+ interface = gr.Interface(
54
+ fn=lambda x: "Application failed to load model.", # Simple function
55
+ inputs=gr.Textbox(label="Status"),
56
+ outputs=gr.Textbox(),
57
+ title="Application Error",
58
+ description="Failed to load the model. Check the logs for details."
59
+ )
 
 
 
60
 
61
 
62
+ # 4. Launch the Gradio App
63
+ # This is crucial for App Spaces to run your application.
64
  if __name__ == "__main__":
65
+ # The listen='0.0.0.0' and share=False are often handled by the App Space environment
66
+ # but including them is harmless. App Spaces expose on port 7860 by default.
67
+ interface.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
requirements.txt CHANGED
@@ -1,2 +1,4 @@
1
  huggingface_hub==0.25.2
2
- transformers==4.12.5
 
 
 
1
  huggingface_hub==0.25.2
2
+ gradio
3
+ transformers==4.12.5
4
+ torch