
https://huggingface.co/spaces/AlekseyCalvin/soonfactory3

Some Directions/Tips by A.C.T.

Above is a link to the web-app space I made for
generating visuals generally and RCA-relevant visuals
specifically. Use is free, with registration required.
HuggingFace is the largest database of open-source machine
learning models and resources. However, there is a
HuggingFace-wide quota (per an individual IP address, per
24 hours) on the utilization/allocation of GPU*¹ compute
resources across all GPU-enabled spaces. One gets roughly
300 seconds of generation time (the model initialization time
is generally not counted towards that). Once evoked and
utilized, these usage quota seconds get replenished very
slowly (at a rate of around 10 real life minutes per each
additional second of GPU resource utilization), but all of the
300 seconds are restored every 24 hours. Most current large
machine learning models require substantial GPU resources
to operate.

If anyone using this happens to have a computer with a GPU,
I would gladly advise on setting up and utilizing models
locally (which may be possible not only with text to image
generators, but also open source language models,
automated agent models, extant specialized models, or
specializing fine-tuning workflows).

Now, to use this particular text to image generative model
space:

__

I.

Click on the first from among the inventory/gallery of
fine-tuned style/content adapters (aka LoRA’s*²).

__

II.

Activating the CUSTOM MODEL-ADAPTOR:

Write a prompt, pre-phrasing it with "RCA" (add those
letters at the start, in the prompting text-box). “RCA” herein
functions as a special word/token*³, which would activate/

https://huggingface.co/spaces/AlekseyCalvin/soonfactory3

strengthen the influence of the custom training. With that
said, when a given LoRA is used alongside its base model,
the influence of the fine-tuned data-set should figure in the
generated results even irrespectively of the activator; that is,
unless you lower all the way to 0 the "LoRA scale"
configuration parameter (accessible here bottom right slider
in Advanced Settings). Still, the activator word/token should
further reinforce and focus this influence.

__

III.

On Prompting (1):

In contrast to most text to image models (esp. Stable
Diffusion variants), the base model here (a sped-up slightly
frankensteined modification of "Flux v.1" by Black Forest
Labs) is fairly well suited to descriptive natural language-
style prompting. Still, prompting by listing wanted features
— or even by decontextualized repetition of terms — may
also work well, especially towards reinforcing specific
features. Generally speaking, the workflow consists of
iterating prompts and/or settings until desired results is
achieved.

__

IV.

On Prompting (2):

As I mentioned at the meeting, this model is also
relatively adept at rendering short textual phrases. Use
quotation marks to prompt titles, slogans, etc... Sometimes
the use of a colon also helps.

Structurally, the opening phrases of a prompt generally hold
the greatest weight (influence on the result), as compared to
the phrases/terms closer to its tail*. For most text2image
models, the furthest terms from the start are the least
weighted (the primary exceptions have been modified
models with various forms of a custom weighing syntax, but
that has not yet been implemented in Flux). The text encoder
component of a model is the part that assesses the textual
input, subdivides it into a list of "tokens" roughly
corresponding to individual terms/words, and translates/
encodes these terms to numerical embeddings serving as

guiding figures for the model's operations. Most text to
image models also only take the maximum of 72 term
prompts, this being the limit across the series of widely used
CLIP-family of text encoders. Flux, however, features two
concurrent text encoders: a CLIP-style encoder and a more
advanced T5_xxl encoder, with a significantly wider potential
scope. Still, the most cohesive inputs interpretations would
probably fall within the 70 or so term range where the two
encoders work in synergy. But with Flux it's okay to go over
that count, and lengthy descriptive prompts often work well.

An example of a prompt. Could really be improved on:

RCA style Communist party poster with front and centered text: "Ready
for REVOLUTION?" in large narrow consistent Constructivist font
alongside a red Soviet hammer and sickle over the background of planet
Earth, as seen from the stratosphere above the North American continent.
Below it is narrow 3D text: "JOIN the Communists!”. HD detailed
photorealistic agitprop art, professional agitprop poster illustration, black
background empty black panel on the very bottom.

I could add further examples here if anyone is interested.

__

V.

As for the Other “Advanced” Settings:

The "CFG Scale", or "Classifier-Free Guidance Scale" is
the measure to which the model is guides entirely by its
parameterization and other factors/settings, rather than the
text prompt. In practice, the higher this value, the more
exactly the model would try to follow the textual prompt.
However, beyond a certain low measure, this is likely to be
paralleled by a proportional quality loss, warped forms,
oversaturated colors, and generally an increase in visual
artifacts. With this particular version of Flux, CFG between 2
and 4 is generally the peak quality zone. However, if
attributes of the prompts are persistently ignored in the
results, one may raise it to 5 or perhaps slightly above that
without risking too much loss in quality or deformation
contingency.

The number of "Steps" is how long the model spends trying
to render something. Every step corresponds to a
progressive iteration of an image from some initial chaotic

distribution of latent noise (step zero) towards prompted
directions or/and the model's internal parameterization
proclivities.

The "Seed" value refers to the above-mentioned
distribution of latent noise. By default, this distribution is set
to change each time one presses "Generate" and thereby
launches inference. This way, one would receive very
different results even given the same prompt and all other
settings remaining the same. This way, one may iterate in a
more global way through compositions. In order to iterate on
an image more locally, after achieving a satisfactory
composition by iterating the initial "Seed" value alongside
the prompt/settings, simply uncheck the "Randomize seed"
option and also copy down the numerical representation of
the noise distribution (the number next to the "Seed" value).
By copying down the seed underlying a favored composition,
one may also more directly resume an iterative workflow.

"Width" and "Height" are self-explanatory. However, keep
in mind that values over "1024" may be more prone to
glitches/artifacts, and take longer to render, even with the
same "step count".

Lastly, the "LoRa" value aligns with how much the custom
fine-tuning (chosen at the start by clicking on one of the
boxes) influences each generation. By lowering this value,
one returns the model close to its base parameterization,
which in many cases may enable greater quality and be more
forgiving in terms of the prompt and other settings, whilst
becoming less likely to align with the fine-tuned adapter
model. Once again, to reinforce the adaptor, also pre-phrase
your prompts with the short word/letter-sequence listed
near the top, in an order matching that of the adapter
models inventoried below.

__

NOTES:

1. “GPU”: is a type of calculating hardware, a processing
unit akin to a CPU, but more efficient at certain kinds of
complex operations, like spotting needles in haystacks,
 modeling relational distributions, dynamics, and potentials
among vast layered cross-constellations of figures and
factors, etc. Initially developed and used mainly for
processing graphics (the "G" in GPU), it is now instrumental

to machine learning. May add more info later, given any
interest or demand.

2: “LoRA”, or “Low Rank Adaptor” model: a "portable"
adaptor model distilled from some given large base model –
whether text-to-image, language, or some other type –
through the process of fine-tuning the base model on a
custom data set; typically at a small fraction of the scale and
scope of their base training, and only affecting select and
generally low-level layers (or “ranks”) of the model’s
cumulative architecture (hence, a “low rank” adaptor name).
These may then be used for inference as an amendment
module to the same model. With language models, a LoRA
may correspond to some specialized knowledge base, or/and
a use function template. With text to image models, a LoRA
may correspond to a specific face/personal identity or a
distinctive aesthetic style or template or some other
idiosyncrasy/quality.

3. ”token”: in machine learning, a token is the smallest unit
of data that a model processes. “Tokenization” of text or
images is the first step of translating them into numerical
distributions known as “embeddings”, which then steer the
parametrization of a model.

