Spaces:
Running
Running
import gradio as gr | |
from fastembed import SparseTextEmbedding | |
def sparseembed(docs): | |
model = SparseTextEmbedding(model_name="Qdrant/bm25") | |
embeddings = list(model.embed(docs)) | |
# преобразуем x.values и x.indices в list | |
return [ (x.values.tolist(), x.indices.tolist()) for x in embeddings ] | |
iface = gr.Interface( | |
fn=sparseembed, | |
inputs=[ | |
gr.JSON(label="Docs (JSON array of objects)") | |
], | |
outputs=gr.Dataframe(type="array", headers=["values", "indices"]), | |
api_name="rerank" | |
) | |
if __name__ == "__main__": | |
iface.launch() |