sparseembed / app.py
AlekseyV's picture
Update app.py
7dacf2f verified
raw
history blame contribute delete
577 Bytes
import gradio as gr
from fastembed import SparseTextEmbedding
def sparseembed(docs):
model = SparseTextEmbedding(model_name="Qdrant/bm25")
embeddings = list(model.embed(docs))
# преобразуем x.values и x.indices в list
return [ (x.values.tolist(), x.indices.tolist()) for x in embeddings ]
iface = gr.Interface(
fn=sparseembed,
inputs=[
gr.JSON(label="Docs (JSON array of objects)")
],
outputs=gr.Dataframe(type="array", headers=["values", "indices"]),
api_name="rerank"
)
if __name__ == "__main__":
iface.launch()