Aleksmorshen commited on
Commit
56c9cf4
·
verified ·
1 Parent(s): d9f9d6e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -36
app.py CHANGED
@@ -4,25 +4,19 @@ import torch
4
  from PIL import Image
5
  from transformers import AutoProcessor, AutoModelForCausalLM
6
 
7
- # import os
8
- # import random
9
- # from gradio_client import Client
10
-
11
-
12
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
13
 
14
- # Initialize Florence model
15
  device = "cuda" if torch.cuda.is_available() else "cpu"
16
  florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
17
  florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
18
 
19
- # api_key = os.getenv("HF_READ_TOKEN")
20
-
21
- def generate_caption(image):
22
  if not isinstance(image, Image.Image):
23
  image = Image.fromarray(image)
24
 
25
- inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
 
26
  generated_ids = florence_model.generate(
27
  input_ids=inputs["input_ids"],
28
  pixel_values=inputs["pixel_values"],
@@ -34,35 +28,15 @@ def generate_caption(image):
34
  generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
35
  parsed_answer = florence_processor.post_process_generation(
36
  generated_text,
37
- task="<MORE_DETAILED_CAPTION>",
38
  image_size=(image.width, image.height)
39
  )
40
- prompt = parsed_answer["<MORE_DETAILED_CAPTION>"]
41
- print("\n\nGeneration completed!:"+ prompt)
42
  return prompt
43
- # yield prompt, None
44
- # image_path = generate_image(prompt,random.randint(0, 4294967296))
45
- # yield prompt, image_path
46
 
47
- # def generate_image(prompt, seed=42, width=1024, height=1024):
48
- # try:
49
- # result = Client("KingNish/Realtime-FLUX", hf_token=api_key).predict(
50
- # prompt=prompt,
51
- # seed=seed,
52
- # width=width,
53
- # height=height,
54
- # api_name="/generate_image"
55
- # )
56
- # # Extract the image path from the result tuple
57
- # image_path = result[0]
58
- # return image_path
59
- # except Exception as e:
60
- # raise Exception(f"Error generating image: {str(e)}")
61
-
62
- io = gr.Interface(generate_caption,
63
- inputs=[gr.Image(label="Input Image")],
64
- outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True),
65
- # gr.Image(label="Output Image")
66
- ]
67
  )
68
  io.launch(debug=True)
 
4
  from PIL import Image
5
  from transformers import AutoProcessor, AutoModelForCausalLM
6
 
 
 
 
 
 
7
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
8
 
9
+ # Инициализация модели Florence
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
  florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
12
  florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
13
 
14
+ def generate_ad_post(image):
 
 
15
  if not isinstance(image, Image.Image):
16
  image = Image.fromarray(image)
17
 
18
+ # Измененный текст запроса для генерации рекламного поста
19
+ inputs = florence_processor(text="Создайте рекламный пост на русском языке", images=image, return_tensors="pt").to(device)
20
  generated_ids = florence_model.generate(
21
  input_ids=inputs["input_ids"],
22
  pixel_values=inputs["pixel_values"],
 
28
  generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
29
  parsed_answer = florence_processor.post_process_generation(
30
  generated_text,
31
+ task="Создание рекламного поста",
32
  image_size=(image.width, image.height)
33
  )
34
+ prompt = parsed_answer["Создание рекламного поста"]
35
+ print("\n\nГенерация завершена!:"+ prompt)
36
  return prompt
 
 
 
37
 
38
+ io = gr.Interface(generate_ad_post,
39
+ inputs=[gr.Image(label="Входное изображение")],
40
+ outputs=[gr.Textbox(label="Рекламный пост", lines=2, show_copy_button=True)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  )
42
  io.launch(debug=True)