Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
| # Streamlit app configuration | |
| st.set_page_config(page_title="AI Chatbot", layout="centered") | |
| # Load the model pipeline | |
| def load_pipeline(): | |
| model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2" | |
| # Load tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| device_map="auto", # Use GPU if available | |
| rope_scaling=None # Avoid issues with rope_scaling | |
| ) | |
| return pipeline("text-generation", model=model, tokenizer=tokenizer) | |
| pipe = load_pipeline() | |
| # Streamlit App UI | |
| st.title("🤖 AI Chatbot") | |
| st.markdown( | |
| """ | |
| Welcome to the **AI Chatbot** powered by Hugging Face's **Llama-3.1-8B-Lexi-Uncensored-V2** model. | |
| Type your message below and interact with the AI! | |
| """ | |
| ) | |
| # User input area | |
| user_input = st.text_area( | |
| "Your Message", | |
| placeholder="Type your message here...", | |
| height=100 | |
| ) | |
| # Button to generate response | |
| if st.button("Generate Response"): | |
| if user_input.strip(): | |
| with st.spinner("Generating response..."): | |
| try: | |
| response = pipe(user_input, max_length=150, num_return_sequences=1) | |
| st.text_area("Response", value=response[0]["generated_text"], height=200) | |
| except Exception as e: | |
| st.error(f"An error occurred: {e}") | |
| else: | |
| st.warning("Please enter a message before clicking the button.") | |
| # Footer | |
| st.markdown("---") | |
| st.markdown("Made with ❤️ using [Streamlit](https://streamlit.io) and [Hugging Face](https://huggingface.co).") |