Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pip install streamlit transformers
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
|
| 5 |
+
# Load the pipeline
|
| 6 |
+
model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
|
| 7 |
+
pipe = pipeline("text-generation", model=model_name)
|
| 8 |
+
|
| 9 |
+
# Optionally load the tokenizer and model directly (not used directly in this example)
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 12 |
+
|
| 13 |
+
def generate_response(prompt):
|
| 14 |
+
"""Generate a response from the model given a prompt."""
|
| 15 |
+
response = pipe(prompt, max_length=100, num_return_sequences=1)
|
| 16 |
+
return response[0]['generated_text']
|
| 17 |
+
|
| 18 |
+
# Streamlit Interface
|
| 19 |
+
st.title("AI Chatbot using Hugging Face")
|
| 20 |
+
st.markdown("This app uses the Llama-3.1-8B-Lexi-Uncensored-V2 model to generate responses.")
|
| 21 |
+
|
| 22 |
+
user_input = st.text_input("Enter your message:", placeholder="Type something here...")
|
| 23 |
+
|
| 24 |
+
if st.button("Generate Response"):
|
| 25 |
+
if user_input:
|
| 26 |
+
response = generate_response(user_input)
|
| 27 |
+
st.text_area("Response:", value=response, height=200)
|
| 28 |
+
else:
|
| 29 |
+
st.warning("Please enter a message before clicking the button.")
|