Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,698 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
LoRA Trainer Funcional para Hugging Face
|
| 4 |
+
Baseado no kohya-ss sd-scripts
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
import json
|
| 11 |
+
import subprocess
|
| 12 |
+
import shutil
|
| 13 |
+
import zipfile
|
| 14 |
+
import tempfile
|
| 15 |
+
import toml
|
| 16 |
+
import logging
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from typing import Optional, Tuple, List, Dict, Any
|
| 19 |
+
import time
|
| 20 |
+
import threading
|
| 21 |
+
import queue
|
| 22 |
+
|
| 23 |
+
# Adicionar o diretório sd-scripts ao path
|
| 24 |
+
sys.path.insert(0, str(Path(__file__).parent / "sd-scripts"))
|
| 25 |
+
|
| 26 |
+
# Configurar logging
|
| 27 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 28 |
+
logger = logging.getLogger(__name__)
|
| 29 |
+
|
| 30 |
+
class LoRATrainerHF:
|
| 31 |
+
def __init__(self):
|
| 32 |
+
self.base_dir = Path("/tmp/lora_training")
|
| 33 |
+
self.base_dir.mkdir(exist_ok=True)
|
| 34 |
+
|
| 35 |
+
self.models_dir = self.base_dir / "models"
|
| 36 |
+
self.models_dir.mkdir(exist_ok=True)
|
| 37 |
+
|
| 38 |
+
self.projects_dir = self.base_dir / "projects"
|
| 39 |
+
self.projects_dir.mkdir(exist_ok=True)
|
| 40 |
+
|
| 41 |
+
self.sd_scripts_dir = Path(__file__).parent / "sd-scripts"
|
| 42 |
+
|
| 43 |
+
# URLs dos modelos
|
| 44 |
+
self.model_urls = {
|
| 45 |
+
"Anime (animefull-final-pruned)": "https://huggingface.co/hollowstrawberry/stable-diffusion-guide/resolve/main/models/animefull-final-pruned-fp16.safetensors",
|
| 46 |
+
"AnyLoRA": "https://huggingface.co/Lykon/AnyLoRA/resolve/main/AnyLoRA_noVae_fp16-pruned.ckpt",
|
| 47 |
+
"Stable Diffusion 1.5": "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors",
|
| 48 |
+
"Waifu Diffusion 1.4": "https://huggingface.co/hakurei/waifu-diffusion-v1-4/resolve/main/wd-1-4-anime_e1.ckpt"
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
self.training_process = None
|
| 52 |
+
self.training_output_queue = queue.Queue()
|
| 53 |
+
|
| 54 |
+
def install_dependencies(self) -> str:
|
| 55 |
+
"""Instala as dependências necessárias"""
|
| 56 |
+
try:
|
| 57 |
+
logger.info("Instalando dependências...")
|
| 58 |
+
|
| 59 |
+
# Lista de pacotes necessários
|
| 60 |
+
packages = [
|
| 61 |
+
"torch>=2.0.0",
|
| 62 |
+
"torchvision>=0.15.0",
|
| 63 |
+
"diffusers>=0.21.0",
|
| 64 |
+
"transformers>=4.25.0",
|
| 65 |
+
"accelerate>=0.20.0",
|
| 66 |
+
"safetensors>=0.3.0",
|
| 67 |
+
"huggingface-hub>=0.16.0",
|
| 68 |
+
"xformers>=0.0.20",
|
| 69 |
+
"bitsandbytes>=0.41.0",
|
| 70 |
+
"opencv-python>=4.7.0",
|
| 71 |
+
"Pillow>=9.0.0",
|
| 72 |
+
"numpy>=1.21.0",
|
| 73 |
+
"tqdm>=4.64.0",
|
| 74 |
+
"toml>=0.10.0",
|
| 75 |
+
"tensorboard>=2.13.0",
|
| 76 |
+
"wandb>=0.15.0",
|
| 77 |
+
"scipy>=1.9.0",
|
| 78 |
+
"matplotlib>=3.5.0",
|
| 79 |
+
"datasets>=2.14.0",
|
| 80 |
+
"peft>=0.5.0",
|
| 81 |
+
"omegaconf>=2.3.0"
|
| 82 |
+
]
|
| 83 |
+
|
| 84 |
+
# Instalar pacotes
|
| 85 |
+
for package in packages:
|
| 86 |
+
try:
|
| 87 |
+
subprocess.run([
|
| 88 |
+
sys.executable, "-m", "pip", "install", package, "--quiet"
|
| 89 |
+
], check=True, capture_output=True, text=True)
|
| 90 |
+
logger.info(f"✓ {package} instalado")
|
| 91 |
+
except subprocess.CalledProcessError as e:
|
| 92 |
+
logger.warning(f"⚠ Erro ao instalar {package}: {e}")
|
| 93 |
+
|
| 94 |
+
return "✅ Dependências instaladas com sucesso!"
|
| 95 |
+
|
| 96 |
+
except Exception as e:
|
| 97 |
+
logger.error(f"Erro ao instalar dependências: {e}")
|
| 98 |
+
return f"❌ Erro ao instalar dependências: {e}"
|
| 99 |
+
|
| 100 |
+
def download_model(self, model_choice: str, custom_url: str = "") -> str:
|
| 101 |
+
"""Download do modelo base"""
|
| 102 |
+
try:
|
| 103 |
+
if custom_url.strip():
|
| 104 |
+
model_url = custom_url.strip()
|
| 105 |
+
model_name = model_url.split("/")[-1]
|
| 106 |
+
else:
|
| 107 |
+
if model_choice not in self.model_urls:
|
| 108 |
+
return f"❌ Modelo '{model_choice}' não encontrado"
|
| 109 |
+
model_url = self.model_urls[model_choice]
|
| 110 |
+
model_name = model_url.split("/")[-1]
|
| 111 |
+
|
| 112 |
+
model_path = self.models_dir / model_name
|
| 113 |
+
|
| 114 |
+
if model_path.exists():
|
| 115 |
+
return f"✅ Modelo já existe: {model_name}"
|
| 116 |
+
|
| 117 |
+
logger.info(f"Baixando modelo: {model_url}")
|
| 118 |
+
|
| 119 |
+
# Download usando wget
|
| 120 |
+
result = subprocess.run([
|
| 121 |
+
"wget", "-O", str(model_path), model_url, "--progress=bar:force"
|
| 122 |
+
], capture_output=True, text=True)
|
| 123 |
+
|
| 124 |
+
if result.returncode == 0:
|
| 125 |
+
return f"✅ Modelo baixado: {model_name} ({model_path.stat().st_size // (1024*1024)} MB)"
|
| 126 |
+
else:
|
| 127 |
+
return f"❌ Erro no download: {result.stderr}"
|
| 128 |
+
|
| 129 |
+
except Exception as e:
|
| 130 |
+
logger.error(f"Erro ao baixar modelo: {e}")
|
| 131 |
+
return f"❌ Erro ao baixar modelo: {e}"
|
| 132 |
+
|
| 133 |
+
def process_dataset(self, dataset_zip, project_name: str) -> Tuple[str, str]:
|
| 134 |
+
"""Processa o dataset enviado"""
|
| 135 |
+
try:
|
| 136 |
+
if not dataset_zip:
|
| 137 |
+
return "❌ Nenhum dataset foi enviado", ""
|
| 138 |
+
|
| 139 |
+
if not project_name.strip():
|
| 140 |
+
return "❌ Nome do projeto é obrigatório", ""
|
| 141 |
+
|
| 142 |
+
project_name = project_name.strip().replace(" ", "_")
|
| 143 |
+
project_dir = self.projects_dir / project_name
|
| 144 |
+
project_dir.mkdir(exist_ok=True)
|
| 145 |
+
|
| 146 |
+
dataset_dir = project_dir / "dataset"
|
| 147 |
+
if dataset_dir.exists():
|
| 148 |
+
shutil.rmtree(dataset_dir)
|
| 149 |
+
dataset_dir.mkdir()
|
| 150 |
+
|
| 151 |
+
# Extrair ZIP
|
| 152 |
+
with zipfile.ZipFile(dataset_zip.name, 'r') as zip_ref:
|
| 153 |
+
zip_ref.extractall(dataset_dir)
|
| 154 |
+
|
| 155 |
+
# Analisar dataset
|
| 156 |
+
image_extensions = {'.jpg', '.jpeg', '.png', '.webp', '.bmp', '.tiff'}
|
| 157 |
+
images = []
|
| 158 |
+
captions = []
|
| 159 |
+
|
| 160 |
+
for file_path in dataset_dir.rglob("*"):
|
| 161 |
+
if file_path.suffix.lower() in image_extensions:
|
| 162 |
+
images.append(file_path)
|
| 163 |
+
|
| 164 |
+
# Procurar caption
|
| 165 |
+
caption_path = file_path.with_suffix('.txt')
|
| 166 |
+
if caption_path.exists():
|
| 167 |
+
captions.append(caption_path)
|
| 168 |
+
|
| 169 |
+
info = f"✅ Dataset processado!\n"
|
| 170 |
+
info += f"📁 Projeto: {project_name}\n"
|
| 171 |
+
info += f"🖼️ Imagens: {len(images)}\n"
|
| 172 |
+
info += f"📝 Captions: {len(captions)}\n"
|
| 173 |
+
info += f"📂 Diretório: {dataset_dir}"
|
| 174 |
+
|
| 175 |
+
return info, str(dataset_dir)
|
| 176 |
+
|
| 177 |
+
except Exception as e:
|
| 178 |
+
logger.error(f"Erro ao processar dataset: {e}")
|
| 179 |
+
return f"❌ Erro ao processar dataset: {e}", ""
|
| 180 |
+
|
| 181 |
+
def create_training_config(self,
|
| 182 |
+
project_name: str,
|
| 183 |
+
dataset_dir: str,
|
| 184 |
+
model_choice: str,
|
| 185 |
+
custom_model_url: str,
|
| 186 |
+
resolution: int,
|
| 187 |
+
batch_size: int,
|
| 188 |
+
epochs: int,
|
| 189 |
+
learning_rate: float,
|
| 190 |
+
text_encoder_lr: float,
|
| 191 |
+
network_dim: int,
|
| 192 |
+
network_alpha: int,
|
| 193 |
+
lora_type: str,
|
| 194 |
+
optimizer: str,
|
| 195 |
+
scheduler: str,
|
| 196 |
+
flip_aug: bool,
|
| 197 |
+
shuffle_caption: bool,
|
| 198 |
+
keep_tokens: int,
|
| 199 |
+
clip_skip: int,
|
| 200 |
+
mixed_precision: str,
|
| 201 |
+
save_every_n_epochs: int,
|
| 202 |
+
max_train_steps: int) -> str:
|
| 203 |
+
"""Cria configuração de treinamento"""
|
| 204 |
+
try:
|
| 205 |
+
if not project_name.strip():
|
| 206 |
+
return "❌ Nome do projeto é obrigatório"
|
| 207 |
+
|
| 208 |
+
project_name = project_name.strip().replace(" ", "_")
|
| 209 |
+
project_dir = self.projects_dir / project_name
|
| 210 |
+
project_dir.mkdir(exist_ok=True)
|
| 211 |
+
|
| 212 |
+
output_dir = project_dir / "output"
|
| 213 |
+
output_dir.mkdir(exist_ok=True)
|
| 214 |
+
|
| 215 |
+
log_dir = project_dir / "logs"
|
| 216 |
+
log_dir.mkdir(exist_ok=True)
|
| 217 |
+
|
| 218 |
+
# Determinar modelo
|
| 219 |
+
if custom_model_url.strip():
|
| 220 |
+
model_name = custom_model_url.strip().split("/")[-1]
|
| 221 |
+
else:
|
| 222 |
+
model_name = self.model_urls[model_choice].split("/")[-1]
|
| 223 |
+
|
| 224 |
+
model_path = self.models_dir / model_name
|
| 225 |
+
|
| 226 |
+
if not model_path.exists():
|
| 227 |
+
return f"❌ Modelo não encontrado: {model_name}. Faça o download primeiro."
|
| 228 |
+
|
| 229 |
+
# Configuração do dataset
|
| 230 |
+
dataset_config = {
|
| 231 |
+
"general": {
|
| 232 |
+
"shuffle_caption": shuffle_caption,
|
| 233 |
+
"caption_extension": ".txt",
|
| 234 |
+
"keep_tokens": keep_tokens,
|
| 235 |
+
"flip_aug": flip_aug,
|
| 236 |
+
"color_aug": False,
|
| 237 |
+
"face_crop_aug_range": None,
|
| 238 |
+
"random_crop": False,
|
| 239 |
+
"debug_dataset": False
|
| 240 |
+
},
|
| 241 |
+
"datasets": [{
|
| 242 |
+
"resolution": resolution,
|
| 243 |
+
"batch_size": batch_size,
|
| 244 |
+
"subsets": [{
|
| 245 |
+
"image_dir": str(dataset_dir),
|
| 246 |
+
"num_repeats": 1
|
| 247 |
+
}]
|
| 248 |
+
}]
|
| 249 |
+
}
|
| 250 |
+
|
| 251 |
+
# Configuração de treinamento
|
| 252 |
+
training_config = {
|
| 253 |
+
"model_arguments": {
|
| 254 |
+
"pretrained_model_name_or_path": str(model_path),
|
| 255 |
+
"v2": False,
|
| 256 |
+
"v_parameterization": False,
|
| 257 |
+
"clip_skip": clip_skip
|
| 258 |
+
},
|
| 259 |
+
"dataset_arguments": {
|
| 260 |
+
"dataset_config": str(project_dir / "dataset_config.toml")
|
| 261 |
+
},
|
| 262 |
+
"training_arguments": {
|
| 263 |
+
"output_dir": str(output_dir),
|
| 264 |
+
"output_name": project_name,
|
| 265 |
+
"save_precision": "fp16",
|
| 266 |
+
"save_every_n_epochs": save_every_n_epochs,
|
| 267 |
+
"max_train_epochs": epochs if max_train_steps == 0 else None,
|
| 268 |
+
"max_train_steps": max_train_steps if max_train_steps > 0 else None,
|
| 269 |
+
"train_batch_size": batch_size,
|
| 270 |
+
"gradient_accumulation_steps": 1,
|
| 271 |
+
"learning_rate": learning_rate,
|
| 272 |
+
"text_encoder_lr": text_encoder_lr,
|
| 273 |
+
"lr_scheduler": scheduler,
|
| 274 |
+
"lr_warmup_steps": 0,
|
| 275 |
+
"optimizer_type": optimizer,
|
| 276 |
+
"mixed_precision": mixed_precision,
|
| 277 |
+
"save_model_as": "safetensors",
|
| 278 |
+
"seed": 42,
|
| 279 |
+
"max_data_loader_n_workers": 2,
|
| 280 |
+
"persistent_data_loader_workers": True,
|
| 281 |
+
"gradient_checkpointing": True,
|
| 282 |
+
"xformers": True,
|
| 283 |
+
"lowram": True,
|
| 284 |
+
"cache_latents": True,
|
| 285 |
+
"cache_latents_to_disk": True,
|
| 286 |
+
"logging_dir": str(log_dir),
|
| 287 |
+
"log_with": "tensorboard"
|
| 288 |
+
},
|
| 289 |
+
"network_arguments": {
|
| 290 |
+
"network_module": "networks.lora" if lora_type == "LoRA" else "networks.dylora",
|
| 291 |
+
"network_dim": network_dim,
|
| 292 |
+
"network_alpha": network_alpha,
|
| 293 |
+
"network_train_unet_only": False,
|
| 294 |
+
"network_train_text_encoder_only": False
|
| 295 |
+
}
|
| 296 |
+
}
|
| 297 |
+
|
| 298 |
+
# Adicionar argumentos específicos para LoCon
|
| 299 |
+
if lora_type == "LoCon":
|
| 300 |
+
training_config["network_arguments"]["network_module"] = "networks.lora"
|
| 301 |
+
training_config["network_arguments"]["conv_dim"] = max(1, network_dim // 2)
|
| 302 |
+
training_config["network_arguments"]["conv_alpha"] = max(1, network_alpha // 2)
|
| 303 |
+
|
| 304 |
+
# Salvar configurações
|
| 305 |
+
dataset_config_path = project_dir / "dataset_config.toml"
|
| 306 |
+
training_config_path = project_dir / "training_config.toml"
|
| 307 |
+
|
| 308 |
+
with open(dataset_config_path, 'w') as f:
|
| 309 |
+
toml.dump(dataset_config, f)
|
| 310 |
+
|
| 311 |
+
with open(training_config_path, 'w') as f:
|
| 312 |
+
toml.dump(training_config, f)
|
| 313 |
+
|
| 314 |
+
return f"✅ Configuração criada!\n📁 Dataset: {dataset_config_path}\n⚙️ Treinamento: {training_config_path}"
|
| 315 |
+
|
| 316 |
+
except Exception as e:
|
| 317 |
+
logger.error(f"Erro ao criar configuração: {e}")
|
| 318 |
+
return f"❌ Erro ao criar configuração: {e}"
|
| 319 |
+
|
| 320 |
+
def start_training(self, project_name: str) -> str:
|
| 321 |
+
"""Inicia o treinamento"""
|
| 322 |
+
try:
|
| 323 |
+
if not project_name.strip():
|
| 324 |
+
return "❌ Nome do projeto é obrigatório"
|
| 325 |
+
|
| 326 |
+
project_name = project_name.strip().replace(" ", "_")
|
| 327 |
+
project_dir = self.projects_dir / project_name
|
| 328 |
+
|
| 329 |
+
training_config_path = project_dir / "training_config.toml"
|
| 330 |
+
if not training_config_path.exists():
|
| 331 |
+
return "❌ Configuração não encontrada. Crie a configuração primeiro."
|
| 332 |
+
|
| 333 |
+
# Script de treinamento
|
| 334 |
+
train_script = self.sd_scripts_dir / "train_network.py"
|
| 335 |
+
if not train_script.exists():
|
| 336 |
+
return "❌ Script de treinamento não encontrado"
|
| 337 |
+
|
| 338 |
+
# Comando de treinamento
|
| 339 |
+
cmd = [
|
| 340 |
+
sys.executable,
|
| 341 |
+
str(train_script),
|
| 342 |
+
"--config_file", str(training_config_path)
|
| 343 |
+
]
|
| 344 |
+
|
| 345 |
+
logger.info(f"Iniciando treinamento: {' '.join(cmd)}")
|
| 346 |
+
|
| 347 |
+
# Executar em thread separada
|
| 348 |
+
def run_training():
|
| 349 |
+
try:
|
| 350 |
+
process = subprocess.Popen(
|
| 351 |
+
cmd,
|
| 352 |
+
stdout=subprocess.PIPE,
|
| 353 |
+
stderr=subprocess.STDOUT,
|
| 354 |
+
text=True,
|
| 355 |
+
bufsize=1,
|
| 356 |
+
universal_newlines=True,
|
| 357 |
+
cwd=str(self.sd_scripts_dir)
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
self.training_process = process
|
| 361 |
+
|
| 362 |
+
for line in process.stdout:
|
| 363 |
+
self.training_output_queue.put(line.strip())
|
| 364 |
+
logger.info(line.strip())
|
| 365 |
+
|
| 366 |
+
process.wait()
|
| 367 |
+
|
| 368 |
+
if process.returncode == 0:
|
| 369 |
+
self.training_output_queue.put("✅ TREINAMENTO CONCLUÍDO COM SUCESSO!")
|
| 370 |
+
else:
|
| 371 |
+
self.training_output_queue.put(f"❌ TREINAMENTO FALHOU (código {process.returncode})")
|
| 372 |
+
|
| 373 |
+
except Exception as e:
|
| 374 |
+
self.training_output_queue.put(f"❌ ERRO NO TREINAMENTO: {e}")
|
| 375 |
+
finally:
|
| 376 |
+
self.training_process = None
|
| 377 |
+
|
| 378 |
+
# Iniciar thread
|
| 379 |
+
training_thread = threading.Thread(target=run_training)
|
| 380 |
+
training_thread.daemon = True
|
| 381 |
+
training_thread.start()
|
| 382 |
+
|
| 383 |
+
return "🚀 Treinamento iniciado! Acompanhe o progresso abaixo."
|
| 384 |
+
|
| 385 |
+
except Exception as e:
|
| 386 |
+
logger.error(f"Erro ao iniciar treinamento: {e}")
|
| 387 |
+
return f"❌ Erro ao iniciar treinamento: {e}"
|
| 388 |
+
|
| 389 |
+
def get_training_output(self) -> str:
|
| 390 |
+
"""Obtém output do treinamento"""
|
| 391 |
+
output_lines = []
|
| 392 |
+
try:
|
| 393 |
+
while not self.training_output_queue.empty():
|
| 394 |
+
line = self.training_output_queue.get_nowait()
|
| 395 |
+
output_lines.append(line)
|
| 396 |
+
except queue.Empty:
|
| 397 |
+
pass
|
| 398 |
+
|
| 399 |
+
if output_lines:
|
| 400 |
+
return "\n".join(output_lines)
|
| 401 |
+
elif self.training_process and self.training_process.poll() is None:
|
| 402 |
+
return "🔄 Treinamento em andamento..."
|
| 403 |
+
else:
|
| 404 |
+
return "⏸️ Nenhum treinamento ativo"
|
| 405 |
+
|
| 406 |
+
def stop_training(self) -> str:
|
| 407 |
+
"""Para o treinamento"""
|
| 408 |
+
try:
|
| 409 |
+
if self.training_process and self.training_process.poll() is None:
|
| 410 |
+
self.training_process.terminate()
|
| 411 |
+
self.training_process.wait(timeout=10)
|
| 412 |
+
return "⏹️ Treinamento interrompido"
|
| 413 |
+
else:
|
| 414 |
+
return "ℹ️ Nenhum treinamento ativo para parar"
|
| 415 |
+
except Exception as e:
|
| 416 |
+
return f"❌ Erro ao parar treinamento: {e}"
|
| 417 |
+
|
| 418 |
+
def list_output_files(self, project_name: str) -> List[str]:
|
| 419 |
+
"""Lista arquivos de saída"""
|
| 420 |
+
try:
|
| 421 |
+
if not project_name.strip():
|
| 422 |
+
return []
|
| 423 |
+
|
| 424 |
+
project_name = project_name.strip().replace(" ", "_")
|
| 425 |
+
project_dir = self.projects_dir / project_name
|
| 426 |
+
output_dir = project_dir / "output"
|
| 427 |
+
|
| 428 |
+
if not output_dir.exists():
|
| 429 |
+
return []
|
| 430 |
+
|
| 431 |
+
files = []
|
| 432 |
+
for file_path in output_dir.rglob("*.safetensors"):
|
| 433 |
+
size_mb = file_path.stat().st_size // (1024 * 1024)
|
| 434 |
+
files.append(f"{file_path.name} ({size_mb} MB)")
|
| 435 |
+
|
| 436 |
+
return sorted(files, reverse=True) # Mais recentes primeiro
|
| 437 |
+
|
| 438 |
+
except Exception as e:
|
| 439 |
+
logger.error(f"Erro ao listar arquivos: {e}")
|
| 440 |
+
return []
|
| 441 |
+
|
| 442 |
+
# Instância global
|
| 443 |
+
trainer = LoRATrainerHF()
|
| 444 |
+
|
| 445 |
+
def create_interface():
|
| 446 |
+
"""Cria a interface Gradio"""
|
| 447 |
+
|
| 448 |
+
with gr.Blocks(title="LoRA Trainer Funcional - Hugging Face", theme=gr.themes.Soft()) as interface:
|
| 449 |
+
|
| 450 |
+
gr.Markdown("""
|
| 451 |
+
# 🎨 LoRA Trainer Funcional para Hugging Face
|
| 452 |
+
|
| 453 |
+
**Treine seus próprios modelos LoRA para Stable Diffusion de forma profissional!**
|
| 454 |
+
|
| 455 |
+
Esta ferramenta é baseada no kohya-ss sd-scripts e oferece treinamento real e funcional de modelos LoRA.
|
| 456 |
+
""")
|
| 457 |
+
|
| 458 |
+
# Estado para armazenar informações
|
| 459 |
+
dataset_dir_state = gr.State("")
|
| 460 |
+
|
| 461 |
+
with gr.Tab("🔧 Instalação"):
|
| 462 |
+
gr.Markdown("### Primeiro, instale as dependências necessárias:")
|
| 463 |
+
install_btn = gr.Button("📦 Instalar Dependências", variant="primary", size="lg")
|
| 464 |
+
install_status = gr.Textbox(label="Status da Instalação", lines=3, interactive=False)
|
| 465 |
+
|
| 466 |
+
install_btn.click(
|
| 467 |
+
fn=trainer.install_dependencies,
|
| 468 |
+
outputs=install_status
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
with gr.Tab("📁 Configuração do Projeto"):
|
| 472 |
+
with gr.Row():
|
| 473 |
+
project_name = gr.Textbox(
|
| 474 |
+
label="Nome do Projeto",
|
| 475 |
+
placeholder="meu_lora_anime",
|
| 476 |
+
info="Nome único para seu projeto (sem espaços especiais)"
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
gr.Markdown("### 📥 Download do Modelo Base")
|
| 480 |
+
with gr.Row():
|
| 481 |
+
model_choice = gr.Dropdown(
|
| 482 |
+
choices=list(trainer.model_urls.keys()),
|
| 483 |
+
label="Modelo Base Pré-definido",
|
| 484 |
+
value="Anime (animefull-final-pruned)",
|
| 485 |
+
info="Escolha um modelo base ou use URL personalizada"
|
| 486 |
+
)
|
| 487 |
+
custom_model_url = gr.Textbox(
|
| 488 |
+
label="URL Personalizada (opcional)",
|
| 489 |
+
placeholder="https://huggingface.co/...",
|
| 490 |
+
info="URL direta para download de modelo personalizado"
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
download_btn = gr.Button("📥 Baixar Modelo", variant="primary")
|
| 494 |
+
download_status = gr.Textbox(label="Status do Download", lines=2, interactive=False)
|
| 495 |
+
|
| 496 |
+
gr.Markdown("### 📊 Upload do Dataset")
|
| 497 |
+
gr.Markdown("""
|
| 498 |
+
**Formato do Dataset:**
|
| 499 |
+
- Crie um arquivo ZIP contendo suas imagens
|
| 500 |
+
- Para cada imagem, inclua um arquivo .txt com o mesmo nome contendo as tags/descrições
|
| 501 |
+
- Exemplo: `imagem1.jpg` + `imagem1.txt`
|
| 502 |
+
""")
|
| 503 |
+
|
| 504 |
+
dataset_upload = gr.File(
|
| 505 |
+
label="Upload do Dataset (ZIP)",
|
| 506 |
+
file_types=[".zip"]
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
process_btn = gr.Button("📊 Processar Dataset", variant="primary")
|
| 510 |
+
dataset_status = gr.Textbox(label="Status do Dataset", lines=4, interactive=False)
|
| 511 |
+
|
| 512 |
+
with gr.Tab("⚙️ Parâmetros de Treinamento"):
|
| 513 |
+
with gr.Row():
|
| 514 |
+
with gr.Column():
|
| 515 |
+
gr.Markdown("#### 🖼️ Configurações de Imagem")
|
| 516 |
+
resolution = gr.Slider(
|
| 517 |
+
minimum=512, maximum=1024, step=64, value=512,
|
| 518 |
+
label="Resolução",
|
| 519 |
+
info="Resolução das imagens (512 = mais rápido, 1024 = melhor qualidade)"
|
| 520 |
+
)
|
| 521 |
+
batch_size = gr.Slider(
|
| 522 |
+
minimum=1, maximum=8, step=1, value=1,
|
| 523 |
+
label="Batch Size",
|
| 524 |
+
info="Imagens por lote (aumente se tiver GPU potente)"
|
| 525 |
+
)
|
| 526 |
+
flip_aug = gr.Checkbox(
|
| 527 |
+
label="Flip Augmentation",
|
| 528 |
+
info="Espelhar imagens para aumentar dataset"
|
| 529 |
+
)
|
| 530 |
+
shuffle_caption = gr.Checkbox(
|
| 531 |
+
value=True,
|
| 532 |
+
label="Shuffle Caption",
|
| 533 |
+
info="Embaralhar ordem das tags"
|
| 534 |
+
)
|
| 535 |
+
keep_tokens = gr.Slider(
|
| 536 |
+
minimum=0, maximum=5, step=1, value=1,
|
| 537 |
+
label="Keep Tokens",
|
| 538 |
+
info="Número de tokens iniciais que não serão embaralhados"
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
with gr.Column():
|
| 542 |
+
gr.Markdown("#### 🎯 Configurações de Treinamento")
|
| 543 |
+
epochs = gr.Slider(
|
| 544 |
+
minimum=1, maximum=100, step=1, value=10,
|
| 545 |
+
label="Épocas",
|
| 546 |
+
info="Número de épocas de treinamento"
|
| 547 |
+
)
|
| 548 |
+
max_train_steps = gr.Number(
|
| 549 |
+
value=0,
|
| 550 |
+
label="Max Train Steps (0 = usar épocas)",
|
| 551 |
+
info="Número máximo de steps (deixe 0 para usar épocas)"
|
| 552 |
+
)
|
| 553 |
+
save_every_n_epochs = gr.Slider(
|
| 554 |
+
minimum=1, maximum=10, step=1, value=1,
|
| 555 |
+
label="Salvar a cada N épocas",
|
| 556 |
+
info="Frequência de salvamento dos checkpoints"
|
| 557 |
+
)
|
| 558 |
+
mixed_precision = gr.Dropdown(
|
| 559 |
+
choices=["fp16", "bf16", "no"],
|
| 560 |
+
value="fp16",
|
| 561 |
+
label="Mixed Precision",
|
| 562 |
+
info="fp16 = mais rápido, bf16 = mais estável"
|
| 563 |
+
)
|
| 564 |
+
clip_skip = gr.Slider(
|
| 565 |
+
minimum=1, maximum=12, step=1, value=2,
|
| 566 |
+
label="CLIP Skip",
|
| 567 |
+
info="Camadas CLIP a pular (2 para anime, 1 para realista)"
|
| 568 |
+
)
|
| 569 |
+
|
| 570 |
+
with gr.Row():
|
| 571 |
+
with gr.Column():
|
| 572 |
+
gr.Markdown("#### 📚 Learning Rate")
|
| 573 |
+
learning_rate = gr.Number(
|
| 574 |
+
value=1e-4,
|
| 575 |
+
label="Learning Rate (UNet)",
|
| 576 |
+
info="Taxa de aprendizado principal"
|
| 577 |
+
)
|
| 578 |
+
text_encoder_lr = gr.Number(
|
| 579 |
+
value=5e-5,
|
| 580 |
+
label="Learning Rate (Text Encoder)",
|
| 581 |
+
info="Taxa de aprendizado do text encoder"
|
| 582 |
+
)
|
| 583 |
+
scheduler = gr.Dropdown(
|
| 584 |
+
choices=["cosine", "cosine_with_restarts", "constant", "constant_with_warmup", "linear"],
|
| 585 |
+
value="cosine_with_restarts",
|
| 586 |
+
label="LR Scheduler",
|
| 587 |
+
info="Algoritmo de ajuste da learning rate"
|
| 588 |
+
)
|
| 589 |
+
optimizer = gr.Dropdown(
|
| 590 |
+
choices=["AdamW8bit", "AdamW", "Lion", "SGD"],
|
| 591 |
+
value="AdamW8bit",
|
| 592 |
+
label="Otimizador",
|
| 593 |
+
info="AdamW8bit = menos memória"
|
| 594 |
+
)
|
| 595 |
+
|
| 596 |
+
with gr.Column():
|
| 597 |
+
gr.Markdown("#### 🧠 Arquitetura LoRA")
|
| 598 |
+
lora_type = gr.Radio(
|
| 599 |
+
choices=["LoRA", "LoCon"],
|
| 600 |
+
value="LoRA",
|
| 601 |
+
label="Tipo de LoRA",
|
| 602 |
+
info="LoRA = geral, LoCon = estilos artísticos"
|
| 603 |
+
)
|
| 604 |
+
network_dim = gr.Slider(
|
| 605 |
+
minimum=4, maximum=128, step=4, value=32,
|
| 606 |
+
label="Network Dimension",
|
| 607 |
+
info="Dimensão da rede (maior = mais detalhes, mais memória)"
|
| 608 |
+
)
|
| 609 |
+
network_alpha = gr.Slider(
|
| 610 |
+
minimum=1, maximum=128, step=1, value=16,
|
| 611 |
+
label="Network Alpha",
|
| 612 |
+
info="Controla a força do LoRA (geralmente dim/2)"
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
with gr.Tab("🚀 Treinamento"):
|
| 616 |
+
create_config_btn = gr.Button("📝 Criar Configuração de Treinamento", variant="primary", size="lg")
|
| 617 |
+
config_status = gr.Textbox(label="Status da Configuração", lines=3, interactive=False)
|
| 618 |
+
|
| 619 |
+
with gr.Row():
|
| 620 |
+
start_training_btn = gr.Button("🎯 Iniciar Treinamento", variant="primary", size="lg")
|
| 621 |
+
stop_training_btn = gr.Button("⏹️ Parar Treinamento", variant="stop")
|
| 622 |
+
|
| 623 |
+
training_output = gr.Textbox(
|
| 624 |
+
label="Output do Treinamento",
|
| 625 |
+
lines=15,
|
| 626 |
+
interactive=False,
|
| 627 |
+
info="Acompanhe o progresso do treinamento em tempo real"
|
| 628 |
+
)
|
| 629 |
+
|
| 630 |
+
# Auto-refresh do output
|
| 631 |
+
def update_output():
|
| 632 |
+
return trainer.get_training_output()
|
| 633 |
+
|
| 634 |
+
with gr.Tab("📥 Download dos Resultados"):
|
| 635 |
+
refresh_files_btn = gr.Button("🔄 Atualizar Lista de Arquivos", variant="secondary")
|
| 636 |
+
|
| 637 |
+
output_files = gr.Dropdown(
|
| 638 |
+
label="Arquivos LoRA Gerados",
|
| 639 |
+
choices=[],
|
| 640 |
+
info="Selecione um arquivo para download"
|
| 641 |
+
)
|
| 642 |
+
|
| 643 |
+
download_info = gr.Markdown("ℹ️ Os arquivos LoRA estarão disponíveis após o treinamento")
|
| 644 |
+
|
| 645 |
+
# Event handlers
|
| 646 |
+
download_btn.click(
|
| 647 |
+
fn=trainer.download_model,
|
| 648 |
+
inputs=[model_choice, custom_model_url],
|
| 649 |
+
outputs=download_status
|
| 650 |
+
)
|
| 651 |
+
|
| 652 |
+
process_btn.click(
|
| 653 |
+
fn=trainer.process_dataset,
|
| 654 |
+
inputs=[dataset_upload, project_name],
|
| 655 |
+
outputs=[dataset_status, dataset_dir_state]
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
create_config_btn.click(
|
| 659 |
+
fn=trainer.create_training_config,
|
| 660 |
+
inputs=[
|
| 661 |
+
project_name, dataset_dir_state, model_choice, custom_model_url,
|
| 662 |
+
resolution, batch_size, epochs, learning_rate, text_encoder_lr,
|
| 663 |
+
network_dim, network_alpha, lora_type, optimizer, scheduler,
|
| 664 |
+
flip_aug, shuffle_caption, keep_tokens, clip_skip, mixed_precision,
|
| 665 |
+
save_every_n_epochs, max_train_steps
|
| 666 |
+
],
|
| 667 |
+
outputs=config_status
|
| 668 |
+
)
|
| 669 |
+
|
| 670 |
+
start_training_btn.click(
|
| 671 |
+
fn=trainer.start_training,
|
| 672 |
+
inputs=project_name,
|
| 673 |
+
outputs=training_output
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
+
stop_training_btn.click(
|
| 677 |
+
fn=trainer.stop_training,
|
| 678 |
+
outputs=training_output
|
| 679 |
+
)
|
| 680 |
+
|
| 681 |
+
refresh_files_btn.click(
|
| 682 |
+
fn=trainer.list_output_files,
|
| 683 |
+
inputs=project_name,
|
| 684 |
+
outputs=output_files
|
| 685 |
+
)
|
| 686 |
+
|
| 687 |
+
return interface
|
| 688 |
+
|
| 689 |
+
if __name__ == "__main__":
|
| 690 |
+
print("🚀 Iniciando LoRA Trainer Funcional...")
|
| 691 |
+
interface = create_interface()
|
| 692 |
+
interface.launch(
|
| 693 |
+
server_name="0.0.0.0",
|
| 694 |
+
server_port=7860,
|
| 695 |
+
share=False,
|
| 696 |
+
show_error=True
|
| 697 |
+
)
|
| 698 |
+
|